2023-CVPR-FCMI
2023-CVPR-FCMI copied to clipboard
PyTorch implementation for
Deep Fair Clustering via Maximizing and Minimizing Mutual Information: Theory, Algorithm and Metric
CVPR 2023
Introduction
FCMI framework
Requirements
- Python 3.9
- PyTorch 1.11.0
- faiss
conda install -c pytorch faiss-gpu
Datasets
Color Reverse MNIST, Office-31, MTFL, and MNIST-USPS
We follow DFC to obtain datasets.
HAR
We follow DFDC to obtain dataset.
Training
Modify the ./Utils/PathPresettingOperator.get_dataset_path, then train the model(s):
# Color Reverse MNIST
python main.py --dataset ReverseMNIST --seed 0
# Office-31
python main.py --dataset Office --seed 0
# MTFL
python main.py --dataset MTFL --seed 9116
# HAR
python main.py --dataset HAR --seed 9116
# MNIST-USPS
python main.py --dataset MNISTUSPS --seed 9116
Model Zoo
The pre-trained models are available here:
| Dataset | Model | Results |
|---|---|---|
| Color Reverse MNIST | Model | Results |
| Office-31 | Model | Results |
| MTFL | Model | Results |
| HAR | Model | Results |
Download the models, then:
python main.py --dataset dataset --seed seed --resume PathToYourModel
Experiment Results:
Citation
If FCMI is useful for your research, please cite the following paper:
@inproceedings{
anonymous2023deep,
title={Deep Fair Clustering via Maximizing and Minimizing Mutual Information: Theory, Algorithm and Metric},
author={Anonymous},
booktitle={Conference on Computer Vision and Pattern Recognition 2023},
year={2023},
url={https://openreview.net/forum?id=A-80aauq5p}
}