feature-selector icon indicating copy to clipboard operation
feature-selector copied to clipboard

Error when attempting to use with a continuous target variable

Open MichelFloyd opened this issue 4 years ago • 0 comments

I'm attempting to use feature-selector in a case where the target variable is continuous. This causes a failure in lightgbm:

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-56-844128e538ad> in <module>
      4     'eval_metric': 'rmse',
      5     'task': 'classification',
----> 6     'cumulative_importance': 0.95
      7 }) 

/opt/conda/lib/python3.6/site-packages/feature_selector/feature_selector.py in identify_all(self, selection_params)
    401         self.identify_single_unique()
    402         self.identify_collinear(selection_params['correlation_threshold'])
--> 403         self.identify_zero_importance(task = selection_params['task'], eval_metric = selection_params['eval_metric'])
    404         self.identify_low_importance(selection_params['cumulative_importance'])
    405 

/opt/conda/lib/python3.6/site-packages/feature_selector/feature_selector.py in identify_zero_importance(self, task, eval_metric, n_iterations, early_stopping)
    309                 model.fit(train_features, train_labels, eval_metric = eval_metric,
    310                           eval_set = [(valid_features, valid_labels)],
--> 311                           early_stopping_rounds = 100, verbose = -1)
    312 
    313                 # Clean up memory

/opt/conda/lib/python3.6/site-packages/lightgbm/sklearn.py in fit(self, X, y, sample_weight, init_score, eval_set, eval_names, eval_sample_weight, eval_class_weight, eval_init_score, eval_metric, early_stopping_rounds, verbose, feature_name, categorical_feature, callbacks)
    760         super(LGBMRanker, self).fit(X, y, sample_weight=sample_weight,
    761                                     init_score=init_score, group=group,
--> 762                                     eval_set=eval_set, eval_names=eval_names,
    763                                     eval_sample_weight=eval_sample_weight,
    764                                     eval_init_score=eval_init_score, eval_group=eval_group,

/opt/conda/lib/python3.6/site-packages/sklearn/utils/multiclass.py in check_classification_targets(y)
    167     y : array-like
    168     """
--> 169     y_type = type_of_target(y)
    170     if y_type not in ['binary', 'multiclass', 'multiclass-multioutput',
    171                       'multilabel-indicator', 'multilabel-sequences']:

ValueError: Unknown label type: 'continuous'

MichelFloyd avatar May 12 '20 00:05 MichelFloyd