PSENet.pytorch
PSENet.pytorch copied to clipboard
Problems during training
Traceback (most recent call last):
File "train.py", line 263, in
看一下图片读进去没,如果你是在linux系统下,你最好进文件夹ls一下,看看是否有不是图片的文件
看一下图片读进去没,如果你是在linux系统下,你最好进文件夹ls一下,看看是否有不是图片的文件
谢谢,文件夹中多了一个自动生成的文件,删除解决了,但是在eval函数中(141-150行),boxes_list返回时空,导致报下面的错误:
Traceback (most recent call last):
File "/mnt/data/ocr/psenet/PSENet.pytorch-master/cal_recall/rrc_evaluation_funcs.py", line 326, in main_evaluation
evalData = evaluate_method_fn(p['g'], p['s'], evalParams)
File "/mnt/data/ocr/psenet/PSENet.pytorch-master/cal_recall/script.py", line 136, in evaluate_method
subm = rrc_evaluation_funcs.load_folder_file(submFilePath, evaluationParams['DET_SAMPLE_NAME_2_ID'], True)
File "/mnt/data/ocr/psenet/PSENet.pytorch-master/cal_recall/rrc_evaluation_funcs.py", line 102, in load_folder_file
raise Exception('ZIP entry not valid: %s' % name)
Exception: ZIP entry not valid: res_F011912250373_002.txt
Traceback (most recent call last):
File "train.py", line 265, in
是我迭代次数太少,导致没有检测到结果吗? 大神帮忙看看这是什么问题,非常感谢
请问数据集的格式是怎么样的,可以发一份完整的数据集吗
你好,请问解决了吗
TypeError: string indices must be integers
看一下图片读进去没,如果你是在linux系统下,你最好进文件夹ls一下,看看是否有不是图片的文件
谢谢,文件夹中多了一个自动生成的文件,删除解决了,但是在eval函数中(141-150行),boxes_list返回时空,导致报下面的错误:
Traceback (most recent call last): File "/mnt/data/ocr/psenet/PSENet.pytorch-master/cal_recall/rrc_evaluation_funcs.py", line 326, in main_evaluation evalData = evaluate_method_fn(p['g'], p['s'], evalParams) File "/mnt/data/ocr/psenet/PSENet.pytorch-master/cal_recall/script.py", line 136, in evaluate_method subm = rrc_evaluation_funcs.load_folder_file(submFilePath, evaluationParams['DET_SAMPLE_NAME_2_ID'], True) File "/mnt/data/ocr/psenet/PSENet.pytorch-master/cal_recall/rrc_evaluation_funcs.py", line 102, in load_folder_file raise Exception('ZIP entry not valid: %s' % name) Exception: ZIP entry not valid: res_F011912250373_002.txt Traceback (most recent call last): File "train.py", line 265, in main() File "train.py", line 219, in main recall, precision, f1 = eval(model, os.path.join(config.output_dir, 'output'), config.testroot, device) File "train.py", line 151, in eval return result_dict['recall'], result_dict['precision'], result_dict['hmean'] TypeError: string indices must be integers
是我迭代次数太少,导致没有检测到结果吗? 大神帮忙看看这是什么问题,非常感谢
您好,请问您这个问题是否解决了呢?
看一下图片读进去没,如果你是在linux系统下,你最好进文件夹ls一下,看看是否有不是图片的文件
谢谢,文件夹中多了一个自动生成的文件,删除解决了,但是在eval函数中(141-150行),boxes_list返回时空,导致报下面的错误:
Traceback (most recent call last): File "/mnt/data/ocr/psenet/PSENet.pytorch-master/cal_recall/rrc_evaluation_funcs.py", line 326, in main_evaluation evalData = evaluate_method_fn(p['g'], p['s'], evalParams) File "/mnt/data/ocr/psenet/PSENet.pytorch-master/cal_recall/script.py", line 136, in evaluate_method subm = rrc_evaluation_funcs.load_folder_file(submFilePath, evaluationParams['DET_SAMPLE_NAME_2_ID'], True) File "/mnt/data/ocr/psenet/PSENet.pytorch-master/cal_recall/rrc_evaluation_funcs.py", line 102, in load_folder_file raise Exception('ZIP entry not valid: %s' % name) Exception: ZIP entry not valid: res_F011912250373_002.txt Traceback (most recent call last): File "train.py", line 265, in main() File "train.py", line 219, in main recall, precision, f1 = eval(model, os.path.join(config.output_dir, 'output'), config.testroot, device) File "train.py", line 151, in eval return result_dict['recall'], result_dict['precision'], result_dict['hmean'] TypeError: string indices must be integers
是我迭代次数太少,导致没有检测到结果吗? 大神帮忙看看这是什么问题,非常感谢
这个问题的原因是因为数据集格式没有按照Readme里面说的格式而产生的,可以修改数据集格式,或者修改script.py里default_evaluation_params里面的匹配规则。
请问如何修改训练任意点训练呢
Exception: ZIP entry not valid
这个确实是script.py里面的正则表达式问题,建议在里面写一个main函数,跑一下自己的数据集,看看是否都能够通过验证;比如我的修改为: ef default_evaluation_params(): """ default_evaluation_params: Default parameters to use for the validation and evaluation. """ return { 'IOU_CONSTRAINT': 0.5, 'AREA_PRECISION_CONSTRAINT': 0.5, # 'GT_SAMPLE_NAME_2_ID': 'gt_img_([0-9]+).txt', 'GT_SAMPLE_NAME_2_ID': 'gt_img_(.).txt', # 'DET_SAMPLE_NAME_2_ID': 'res_img_([0-9]+).txt', 'DET_SAMPLE_NAME_2_ID': 'res_img_(.).txt', 'LTRB': False, # LTRB:2points(left,top,right,bottom) or 4 points(x1,y1,x2,y2,x3,y3,x4,y4) 'CRLF': False, # Lines are delimited by Windows CRLF format 'CONFIDENCES': False, # Detections must include confidence value. AP will be calculated 'PER_SAMPLE_RESULTS': True # Generate per sample results and produce data for visualization } 图片的命名规则将不局限于数字,自己可根据实际修改