deep-learning-for-image-processing icon indicating copy to clipboard operation
deep-learning-for-image-processing copied to clipboard

Added MultiScaleRoIPooling Module

Open cjliu01 opened this issue 1 year ago • 0 comments

Added MultiScaleRoIPooling Module and run this config renset50+FPN+Faster_RCNN+RoIPooling. Keeping other parameters fixed, using batch_size=8 in 4 NVIDIA GeForce RTX 3080 machine, num_workers=8, momentum=0.9, weight_decay=1e-4, epochs=100, lr-steps=[25, 50], Finetuning on the PASCAL_VOC_2012. result at epoch:58 as follows

IoU metric: bbox
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.355
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.657
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.351
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.178
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.359
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.396
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.347
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.528
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.537
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.296
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.501
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.552

cjliu01 avatar Jun 17 '24 03:06 cjliu01