MiniGPT-4
MiniGPT-4 copied to clipboard
`load_in_8bit_fp32_cpu_offload=True
Any idea how to solve this:
Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit
the quantized model. If you want to dispatch the model on the CPU or the disk while keeping
these modules in 32-bit, you need to set load_in_8bit_fp32_cpu_offload=True
and pass a custom
device_map
to from_pretrained
. Check
https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu
for more details.
I have 48gb of vram the GPU RAM must be enough!
48GPU ram should be enough for the demo without the 8bit. Can you set the low_resource to False in eval_configs/minigpt4_eval.yaml and check whether you still have this issue?
I have followed the code given in the huggingface docs:
device_map = {
"transformer.word_embeddings": 0,
"transformer.word_embeddings_layernorm": 0,
"lm_head": "cpu",
"transformer.h": 0,
"transformer.ln_f": 0,
}
quantization_config = BitsAndBytesConfig(llm_int8_enable_fp32_cpu_offload=True)
model = AutoModelForCausalLM.from_pretrained("AlekseyKorshuk/vicuna-7b",device_map='auto', quantization_config=quantization_config)
tokenizer = AutoTokenizer.from_pretrained("AlekseyKorshuk/vicuna-7b")
Getting this error
TypeError: __init__() got an unexpected keyword argument
'load_in_8bit_fp32_cpu_offload'
try this:
model = AutoModelForCausalLM.from_pretrained("AlekseyKorshuk/vicuna-7b",device_map=device_map, quantization_config=quantization_config)
i solve that error like this you can do it same for your model
Load model and tokenizer
quantization_config = BitsAndBytesConfig(load_in_8bit_fp32_cpu_offload=True)
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1", quantization_config=quantization_config) model = PeftModel.from_pretrained(model, "mirajbhandari/mistral-7b-chat-finetune", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("mirajbhandari/mistral-7b-chat-finetune")