end-to-end-machine-learning-with-google-cloud icon indicating copy to clipboard operation
end-to-end-machine-learning-with-google-cloud copied to clipboard

End to End Machine Learning with Google Cloud Platform

trafficstars

E2E-ML-GCP

Raw data

  • Get the data using event driven cloud functions
    • functions: https://console.cloud.google.com/functions/details/us-central1/toBigQuery?project=ivikramtiwari&tab=general&duration=PT1H
  • Store the data in BigQuery
    • bigquery: https://console.cloud.google.com/bigquery?project=ivikramtiwari&folder&organizationId&p=ivikramtiwari&d=census_consensus&t=adult_STAGING&page=table

Enriched data

  • Cleanup the data using dataprep
    • dataprep: https://clouddataprep.com/flows/106821?recipe=514701&tab=recipe
  • Run the cleanup job as a dataflow job at scale
    • dataflow: https://console.cloud.google.com/dataflow/jobsDetail/locations/us-central1/jobs/2018-11-09_09_28_35-15753238828455050695?project=ivikramtiwari

Experiments

  • Launch a deep learning VM and then connect to it using SSH tunnel to access Jupyter lab
    • Deep Learning VMs
      • compute: https://console.cloud.google.com/compute/instancesDetail/zones/us-central1-f/instances/tf?project=ivikramtiwari
      • local: http://localhost:8080/lab?
  • Launch your deep learning job on CMLE and on completion, get the model as output
    • cmle
    • job: https://console.cloud.google.com/mlengine/jobs/gde_summit_18_alpha_1?project=ivikramtiwari
    • model: https://console.cloud.google.com/mlengine/models/census?project=ivikramtiwari

More links

  • Kaggle: https://www.kaggle.com/vikramtiwari
  • slids: https://docs.google.com/presentation/d/1HpNoH2lmzsKgwmC2xDQrVTRuJS75Dtwvp3fZCb1qo74/present