Lightning-NeRF
Lightning-NeRF copied to clipboard
RuntimeError: min(): Expected reduction dim to be specified for input.numel() == 0. Specify the reduction dim with the 'dim' argument.
请问您有遇到过类似的问题吗? input: /mnt/data/Lightning-NeRF$ ns-train lightning_nerf --mixed-precision True --pipeline.model.point-cloud-path /mnt/data/Lightning-NeRF/argo/nerf_data/2aea7bd1-432a-43c5-9445-651102487f65/pcd.ply --pipeline.model.frontal-axis x --pipeline.model.init-density-value 10.0 --pipeline.model.density-grid-base-res 256 --pipeline.model.density-log2-hashmap-size 24 --pipeline.model.bg-density-grid-res 32 --pipeline.model.bg-density-log2-hashmap-size 18 --pipeline.model.near-plane 0.01 --pipeline.model.far-plane 10.0 --pipeline.model.vi-mlp-num-layers 3 --pipeline.model.vi-mlp-hidden-size 64 --pipeline.model.vd-mlp-num-layers 2 --pipeline.model.vd-mlp-hidden-size 32 --pipeline.model.color-grid-base-res 128 --pipeline.model.color-grid-max-res 2048 --pipeline.model.color-grid-fpl 2 --pipeline.model.color-grid-num-levels 8 --pipeline.model.bg-color-grid-base-res 32 --pipeline.model.bg-color-grid-max-res 128 --pipeline.model.bg-color-log2-hashmap-size 16 --pipeline.model.alpha-thre 0.02 --pipeline.model.occ-grid-base-res 256 --pipeline.model.occ-grid-num-levels 4 --pipeline.model.occ-num-samples-per-ray 750 --pipeline.model.occ-grid-update-warmup-step 2 --pipeline.model.pdf-num-samples-per-ray 8 --pipeline.model.pdf-samples-warmup-step 1000 --pipeline.model.pdf-samples-fixed-step 3000 --pipeline.model.pdf-samples-fixed-ratio 0.5 --pipeline.datamanager.train-num-images-to-sample-from 128 --pipeline.datamanager.train-num-times-to-repeat-images 256 --pipeline.model.appearance-embedding-dim 0 argo-data --data /mnt/data/Lightning-NeRF/argo/nerf_data/2aea7bd1-432a-43c5-9445-651102487f65 --orientation-method none
output
/home/bo1-dai/anaconda3/envs/lightning-nerf/lib/python3.8/site-packages/tyro/_fields.py:330: UserWarning: The field optimizer is annotated with type <class 'nerfstudio.engine.optimizers.AdamOptimizerConfig'>, but the default value RAdamOptimizerConfig:
_target: <class 'torch.optim.radam.RAdam'>
lr: 0.0006
eps: 1e-08
max_norm: None
weight_decay: 0.001 has type <class 'nerfstudio.engine.optimizers.RAdamOptimizerConfig'>. We'll try to handle this gracefully, but it may cause unexpected behavior.
warnings.warn(
──────────────────────────────────────────────────────── Config ────────────────────────────────────────────────────────
TrainerConfig(
_target=<class 'nerfstudio.engine.trainer.Trainer'>,
output_dir=PosixPath('outputs'),
method_name='lightning_nerf',
experiment_name=None,
timestamp='2024-07-12_135036',
machine=MachineConfig(seed=42, num_gpus=1, num_machines=1, machine_rank=0, dist_url='auto'),
logging=LoggingConfig(
relative_log_dir=PosixPath('.'),
steps_per_log=10,
max_buffer_size=20,
local_writer=LocalWriterConfig(
_target=<class 'nerfstudio.utils.writer.LocalWriter'>,
enable=True,
stats_to_track=(
<EventName.ITER_TRAIN_TIME: 'Train Iter (time)'>,
<EventName.TRAIN_RAYS_PER_SEC: 'Train Rays / Sec'>,
<EventName.CURR_TEST_PSNR: 'Test PSNR'>,
<EventName.VIS_RAYS_PER_SEC: 'Vis Rays / Sec'>,
<EventName.TEST_RAYS_PER_SEC: 'Test Rays / Sec'>,
<EventName.ETA: 'ETA (time)'>
),
max_log_size=10
),
profiler='basic'
),
viewer=ViewerConfig(
relative_log_filename='viewer_log_filename.txt',
websocket_port=None,
websocket_port_default=7007,
websocket_host='0.0.0.0',
num_rays_per_chunk=32768,
max_num_display_images=512,
quit_on_train_completion=False,
image_format='jpeg',
jpeg_quality=90
),
pipeline=VanillaPipelineConfig(
_target=<class 'nerfstudio.pipelines.base_pipeline.VanillaPipeline'>,
datamanager=VanillaDataManagerConfig(
_target=<class 'nerfstudio.data.datamanagers.base_datamanager.VanillaDataManager'>,
data=None,
camera_optimizer=CameraOptimizerConfig(
_target=<class 'nerfstudio.cameras.camera_optimizers.CameraOptimizer'>,
mode='off',
position_noise_std=0.0,
orientation_noise_std=0.0,
optimizer=AdamOptimizerConfig(
_target=<class 'torch.optim.adam.Adam'>,
lr=0.0006,
eps=1e-15,
max_norm=None,
weight_decay=0
),
scheduler=ExponentialDecaySchedulerConfig(
_target=<class 'nerfstudio.engine.schedulers.ExponentialDecayScheduler'>,
lr_pre_warmup=1e-08,
lr_final=None,
warmup_steps=0,
max_steps=10000,
ramp='cosine'
),
param_group='camera_opt'
),
dataparser=ArgoDataParserConfig(
_target=<class 'nerfstudio.data.dataparsers.argo_dataparser.Argo'>,
data=PosixPath('/mnt/data/Lightning-NeRF/argo/nerf_data/2aea7bd1-432a-43c5-9445-651102487f65'),
scale_factor=1.0,
scene_scale=1.0,
orientation_method='none',
center_method='poses',
auto_scale_poses=True,
load_depth=False,
depth_unit_scale_factor=1.0
),
train_num_rays_per_batch=65536,
train_num_images_to_sample_from=128,
train_num_times_to_repeat_images=256,
eval_num_rays_per_batch=2048,
eval_num_images_to_sample_from=-1,
eval_num_times_to_repeat_images=-1,
eval_image_indices=(0,),
camera_res_scale_factor=1.0,
patch_size=1
),
model=LightningNeRFModelConfig(
_target=<class 'lightning_nerf.model.LightningNeRFModel'>,
enable_collider=True,
collider_params={'near_plane': 2.0, 'far_plane': 6.0},
loss_coefficients={'rgb_loss': 1.0, 'res_rgb_loss': 0.01},
eval_num_rays_per_chunk=131072,
near_plane=0.01,
far_plane=10.0,
vi_mlp_num_layers=3,
vi_mlp_hidden_size=64,
vd_mlp_num_layers=2,
vd_mlp_hidden_size=32,
appearance_embedding_dim=0,
use_average_appearance_embedding=True,
background_color='random',
alpha_thre=0.02,
cone_angle=0.004,
point_cloud_path=PosixPath('/mnt/data/Lightning-NeRF/argo/nerf_data/2aea7bd1-432a-43c5-9445-651102487f65/pcd
.ply'),
frontal_axis='x',
init_density_value=10.0,
density_grid_base_res=256,
density_log2_hashmap_size=24,
color_grid_base_res=128,
color_grid_max_res=2048,
color_grid_fpl=2,
color_log2_hashmap_size=19,
color_grid_num_levels=8,
bg_density_grid_res=32,
bg_density_log2_hashmap_size=18,
bg_color_grid_base_res=32,
bg_color_grid_max_res=128,
bg_color_log2_hashmap_size=16,
occ_grid_base_res=256,
occ_grid_num_levels=4,
occ_grid_update_warmup_step=2,
occ_num_samples_per_ray=750,
pdf_num_samples_per_ray=8,
pdf_samples_warmup_step=1000,
pdf_samples_fixed_step=3000,
pdf_samples_fixed_ratio=0.5,
rgb_padding=None
)
),
optimizers={
'den_encoder': {
'optimizer': RAdamOptimizerConfig(
_target=<class 'torch.optim.radam.RAdam'>,
lr=1.0,
eps=1e-08,
max_norm=None,
weight_decay=0
),
'scheduler': ExponentialDecaySchedulerConfig(
_target=<class 'nerfstudio.engine.schedulers.ExponentialDecayScheduler'>,
lr_pre_warmup=1e-08,
lr_final=0.01,
warmup_steps=10,
max_steps=10000,
ramp='linear'
)
},
'col_encoder': {
'optimizer': RAdamOptimizerConfig(
_target=<class 'torch.optim.radam.RAdam'>,
lr=1.0,
eps=1e-08,
max_norm=None,
weight_decay=0
),
'scheduler': ExponentialDecaySchedulerConfig(
_target=<class 'nerfstudio.engine.schedulers.ExponentialDecayScheduler'>,
lr_pre_warmup=1e-08,
lr_final=0.01,
warmup_steps=10,
max_steps=10000,
ramp='linear'
)
},
'network': {
'optimizer': AdamOptimizerConfig(
_target=<class 'torch.optim.adam.Adam'>,
lr=0.01,
eps=1e-15,
max_norm=None,
weight_decay=0
),
'scheduler': ExponentialDecaySchedulerConfig(
_target=<class 'nerfstudio.engine.schedulers.ExponentialDecayScheduler'>,
lr_pre_warmup=1e-08,
lr_final=0.0001,
warmup_steps=0,
max_steps=30000,
ramp='cosine'
)
}
},
vis='viewer',
data=None,
relative_model_dir=PosixPath('nerfstudio_models'),
steps_per_save=1000,
steps_per_eval_batch=500,
steps_per_eval_image=30000,
steps_per_eval_all_images=30000,
max_num_iterations=30001,
mixed_precision=True,
use_grad_scaler=False,
save_only_latest_checkpoint=True,
load_dir=None,
load_step=None,
load_config=None,
log_gradients=False
)
────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
[13:50:36] Saving config to: outputs/unnamed/lightning_nerf/2024-07-12_135036/config.yml experiment_config.py:129
[13:50:36] Saving checkpoints to: outputs/unnamed/lightning_nerf/2024-07-12_135036/nerfstudio_models trainer.py:139
[13:50:36] Argoverse 2 dataset loaded with #images 289, #masks 289, #depth 0. argo_dataparser.py:188
[13:50:37] Argoverse 2 dataset loaded with #images 31, #masks 31, #depth 0. argo_dataparser.py:188
Setting up training dataset...
Caching 128 out of 289 images, resampling every 256 iters.
Setting up evaluation dataset...
Caching all 31 images.
[13:50:57] Scene box: model.py:368
[-1.0, -0.30000001192092896, -0.10000000149011612]
[1.5, 0.30000001192092896, 0.4000000059604645].
Density grid size (m): tensor([0.6793, 0.1630, 0.1359]). model.py:372
Max-Res color grid size (m): tensor([0.0849, 0.0204, 0.0170]). model.py:375
[13:50:57] vi mlp input: 16, vd mlp input: 40 field.py:156
Render step size: 0.003492213567097982. model.py:314
[13:50:59] Sampler: LightningNeRFSampler( model.py:329
(occupancy_grid): OccGridEstimator()
).
Collider: 0.01, 10.0. model.py:406
[13:51:00] Load vertices: torch.Size([517136, 3]) model.py:192
tensor(134.6774) tensor(138.0226) model.py:193
tensor(73.5035) tensor(76.4893) model.py:194
[13:51:01] tensor(-0.3844) tensor(-0.1551) model.py:195
[13:51:03] #Point cloud in FG bbox: 0, ratio: 0.0. model.py:431
Augmenting bg points with x
as frontal axis. model.py:225
[13:51:06] augment bg points: torch.Size([262144, 3]) model.py:246
[13:51:07] occ grid: model.py:247
tensor([[-1.0000, -0.3000, -0.1000, 1.5000, 0.3000, 0.4000],
[-2.2500, -0.6000, -0.3500, 2.7500, 0.6000, 0.6500],
[-4.7500, -1.2000, -0.8500, 5.2500, 1.2000, 1.1500],
[-9.7500, -2.4000, -1.8500, 10.2500, 2.4000, 2.1500]])
[13:51:13] density encoder: density_encoding.params, torch.Size([16777216]) model.py:463
density encoder: bg_density_encoding.params, torch.Size([262144]) model.py:463
color encoder: color_encoding.params, torch.Size([8388608]) model.py:466
color encoder: bg_color_encoding.params, torch.Size([1048576]) model.py:466
network: vi_mlp.params, torch.Size([6144]) model.py:469
network: direction_encoding.params, torch.Size([0]) model.py:469
network: vd_mlp.params, torch.Size([2048]) model.py:469
╭─────────────────────────────────────────── Viewer ───────────────────────────────────────────╮
│ ╷ │
│ HTTP │ https://viewer.nerf.studio/versions/23-05-01-0/?websocket_url=ws://localhost:7007 │
│ ╵ │
╰──────────────────────────────────────────────────────────────────────────────────────────────╯
[NOTE] Not running eval iterations since only viewer is enabled.
Use --vis {wandb, tensorboard, viewer+wandb, viewer+tensorboard} to run with eval.
No checkpoints to load, training from scratch
FG vertices: torch.Size([0, 3]) model.py:257
Traceback (most recent call last):
File "/mnt/data/anaconda3/envs/lightning-nerf/bin/ns-train", line 8, in