EFG
EFG copied to clipboard
About the config of large ConQueR.
Hi, I found that there is no config of large backbone and 4x resolution about ConQueR in the repo. Can you share the config? Thanks.
I wrote a large config myself. Is it correct?
model:
weights: null
# common variables
hidden_dim: 256
aux_loss: true
loss:
bbox_loss_coef: 4
giou_loss_coef: 2
class_loss_coef: 1
rad_loss_coef: 4
matcher:
class_weight: ${model.loss.class_loss_coef}
bbox_weight: ${model.loss.bbox_loss_coef}
giou_weight: ${model.loss.giou_loss_coef}
rad_weight: ${model.loss.rad_loss_coef}
metrics:
- type: accuracy
params: {}
sparse_resnets:
# num_classes: 1000
depth: 18
out_features: [res2, res3, res4]
num_groups: 1
# Options: FrozenBN, GN, "SyncBN", "BN"
norm: BN1d
activation:
type: ReLU
inplace: True
# zero_init_residual: True
width_per_group: 128
# stride_in_1x1: False
# res5_dilation: 1
res1_out_channels: 128
stem_out_channels: 64
fpn:
in_features: [res2, res3, res4]
top_block_in_feature: "p4"
out_channels: 256
norm: BN
fuse_type: sum
backbone:
type: voxelnet
hidden_dim: ${model.hidden_dim}
position_encoding: sine
out_features: [p2, ]
reader:
norm: BN
extractor:
resnet: ${model.sparse_resnets}
fpn: ${model.fpn}
out_channels: 256
Looking forward to your reply!