Circumventing-Backdoor-Defenses
Circumventing-Backdoor-Defenses copied to clipboard
Code Repository for the Paper ---Revisiting the Assumption of Latent Separability for Backdoor Defenses (ICLR 2023)
Revisiting the Assumption of Latent Separability for Backdoor Defenses (ICLR 2023)
Official repostory for Revisiting the Assumption of Latent Separability for Backdoor Defenses (ICLR 2023).
Refer to https://github.com/vtu81/backdoor-toolbox for a more comprehensive backdoor research code repository, which includes our adaptive attacks, together with various other attacks and defenses.
Attacks
Our proposed adaptive attacks:
adaptive_blend: Adap-Blend attack with a single blending triggeradaptive_patch: Adap-Patch attack withkdifferent patch triggersadaptive_k_way: Adap-K-Way attack, adaptive version of the k-way attack
Some other baselines include:
none: no attackbadnet: basic attack with badnet patch triggerblend: basic attack with a single blending trigger
See poison_tool_box/ for details.
Defenses
We also include some backdoor defenses, including poison samples cleansers and other types of backdoor defenses. See other_cleansers/ and other_defenses/ for details.
Poison Cleansers
SCAn: https://arxiv.org/abs/1908.00686AC: activation clustering, https://arxiv.org/abs/1811.03728SS: spectral signature, https://arxiv.org/abs/1811.00636SPECTRE: https://arxiv.org/abs/2104.11315Strip(modified as a poison cleanser): http://arxiv.org/abs/1902.06531
Other Defenses
NC: Neural Clenase, https://ieeexplore.ieee.org/document/8835365/STRIP(backdoor input filter): http://arxiv.org/abs/1902.06531FP: Fine-Pruning, http://arxiv.org/abs/1805.12185ABL: Anti-Backdoor Learning, https://arxiv.org/abs/2110.11571
Visualization
Visualize the latent space of backdoor models. See visualize.py.
tsne: 2-dimensional T-SNEpca: 2-dimensional PCAoracle: fit the poison latent space with a SVM, see https://arxiv.org/abs/2205.13613
Quick Start
Take launching and defending an Adaptive-Blend attack as an example:
# Create a clean set (for testing and some defenses)
python create_clean_set.py -dataset=cifar10
# Create a poisoned training set
python create_poisoned_set.py -dataset=cifar10 -poison_type=adaptive_blend -poison_rate=0.003 -cover_rate=0.003
# Train on the poisoned training set
python train_on_poisoned_set.py -dataset=cifar10 -poison_type=adaptive_blend -poison_rate=0.003 -cover_rate=0.003
python train_on_poisoned_set.py -dataset=cifar10 -poison_type=adaptive_blend -poison_rate=0.003 -cover_rate=0.003 -no_aug
# Visualize
## $METHOD = ['pca', 'tsne', 'oracle']
python visualize.py -method=$METHOD -dataset=cifar10 -poison_type=adaptive_blend -poison_rate=0.003 -cover_rate=0.003
# Cleanse poison train set with cleansers
## $CLEANSER = ['SCAn', 'AC', 'SS', 'Strip', 'SPECTRE']
## Except for 'CT', you need to train poisoned backdoor models first.
python other_cleanser.py -cleanser=$CLEANSER -dataset=cifar10 -poison_type=adaptive_blend -poison_rate=0.003 -cover_rate=0.003
# Retrain on cleansed set
## $CLEANSER = ['SCAn', 'AC', 'SS', 'Strip', 'SPECTRE']
python train_on_cleansed_set.py -cleanser=$CLEANSER -dataset=cifar10 -poison_type=adaptive_blend -poison_rate=0.003 -cover_rate=0.003
# Other defenses
## $DEFENSE = ['ABL', 'NC', 'STRIP', 'FP']
## Except for 'ABL', you need to train poisoned backdoor models first.
python other_defense.py -defense=$DEFENSE -dataset=cifar10 -poison_type=adaptive_blend -poison_rate=0.003 -cover_rate=0.003
Notice:
SPECTREis implemented in Julia. So you must install Julia and install dependencies before running SPECTRE, see cleansers_tool_box/spectre/README.md for configuration details.
Some other poisoning attacks we compare in our papers:
# No Poison
python create_poisoned_set.py -dataset=cifar10 -poison_type=none -poison_rate=0
# BadNet
python create_poisoned_set.py -dataset=cifar10 -poison_type=badnet -poison_rate=0.003
# Blend
python create_poisoned_set.py -dataset=cifar10 -poison_type=blend -poison_rate=0.003
# Adaptive Patch
python create_poisoned_set.py -dataset=cifar10 -poison_type=adaptive_patch -poison_rate=0.003 -cover_rate=0.006
# Adaptive K Way
python create_poisoned_set.py -dataset=cifar10 -poison_type=adaptive_k_way -poison_rate=0.003 -cover_rate=0.003
You can also:
- train a vanilla model via
python train_vanilla.py - test a trained model via
python test_model.py -dataset=cifar10 -poison_type=adaptive_blend -poison_rate=0.003 -cover_rate=0.003 # other options include: -no_aug, -cleanser=$CLEANSER, -model_path=$MODEL_PATH, see our code for details - enforce a fixed running seed via
-seed=$SEEDoption - change dataset to GTSRB via
-dataset=gtsrboption - change model architectures in config.py
- configure hyperparamters of other defenses in other_defense.py
- see more configurations in config.py