Turing.jl
Turing.jl copied to clipboard
The stochastic differential equations example in the Bayesian DiffEq tutorial doesn't work.
This section is broken (again?) https://turinglang.org/v0.31/tutorials/10-bayesian-differential-equations/#inference-of-a-stochastic-differential-equation
The plot in the tutorials shows no sampling (the chains are just flat lines).
Running the section gives this warning (over and over):
┌ Warning: Incorrect ϵ = NaN; ϵ_previous = 0.07500000000000001 is used instead.
└ @ AdvancedHMC.Adaptation ~/.julia/packages/AdvancedHMC/AlvV4/src/adaptation/stepsize.jl:131
The summary is just the initial parameters:
Summary Statistics
parameters mean std mcse ess_bulk ess_tail rhat ess_per_sec
Symbol Float64 Float64 Float64 Float64 Float64 Float64 Float64
σ 1.5000 0.0000 NaN NaN NaN NaN NaN
α 1.3000 0.0000 0.0000 NaN NaN NaN NaN
β 1.2000 0.0000 0.0000 NaN NaN NaN NaN
γ 2.7000 0.0000 0.0000 NaN NaN NaN NaN
δ 1.2000 0.0000 0.0000 NaN NaN NaN NaN
ϕ1 0.1200 0.0000 0.0000 NaN NaN NaN NaN
ϕ2 0.1200 0.0000 0.0000 NaN NaN NaN NaN
(turing_sde) pkg> st
Project turing_sde v0.1.0
Status `~/repos/scratch/julia/turing_sde/Project.toml`
[0c46a032] DifferentialEquations v7.13.0
[f3b207a7] StatsPlots v0.15.7
[fce5fe82] Turing v0.31.3
[37e2e46d] LinearAlgebra
julia> versioninfo()
Julia Version 1.10.3
Commit 0b4590a5507 (2024-04-30 10:59 UTC)
Build Info:
Official https://julialang.org/ release
Platform Info:
OS: macOS (arm64-apple-darwin22.4.0)
CPU: 10 × Apple M1 Max
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-15.0.7 (ORCJIT, apple-m1)
Threads: 8 default, 0 interactive, 4 GC (on 8 virtual cores)