bsn
bsn copied to clipboard
Implementation of the Budgeted Super Networks
Budgeted Super Networks
Original implementation of the Learning Time/Memory-Efficient Deep Architectures with Budgeted Super Networks
Installation
pip install -r requirements.txt
Running
python bsn_main.py
The available parameters can be seen using python bsn_main.py -h
For exemple to run the Budgeted Super Networks on Cifar10 using the 8 layers/128 channels B-CNF architecture:
python bsn_main.py -arch CNF -layers 8 -channels 128 -dset CIFAR10
All plotting is done through Visdom. The server can be configured using the resources/visdom.json
file.
CUDA usage can be enabled using the -cuda n
flag, where n
corresponds to the index of the GPU.
# To use the first GPU of the machine:
python bsn_main.py -arch CNF -layers 8 -channels 128 -dset CIFAR10 -cuda 0