p-adic numbers
Having watched https://www.youtube.com/watch?v=tRaq4aYPzCc
These numbers are a must. Here is my proposed syntax.
... [0..9A..Z{unicode code point of a printable canonic letter}] mod and prime number.
For example, for a base p-adic 3, this would be an example:
...222222222 mod 3
This of course would evaluate to -1. However, you would need to use at least === to make sure they are the same. In case of a number that can't be represented, it would be === to NaN. The program would need to detect patterns in numbers, so I recommend integrating Wolfram Alpha as a number solver.
If we use a bigger base like 64 we would use 0..9 (10) A..Z (26) or a..z then go into Latin1 from À..Ô and its lower case counterparts.
https://en.wikipedia.org/wiki/List_of_Unicode_characters