fast-stable-diffusion icon indicating copy to clipboard operation
fast-stable-diffusion copied to clipboard

v2 problem, help plz

Open xone4 opened this issue 2 years ago • 25 comments

every time i run v2 it always stop at this point the system ram shoots through the roof and it look like this

LatentDiffusion: Running in v-prediction mode Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads. DiffusionWrapper has 865.91 M params. making attention of type 'vanilla-xformers' with 512 in_channels building MemoryEfficientAttnBlock with 512 in_channels... Working with z of shape (1, 4, 32, 32) = 4096 dimensions. making attention of type 'vanilla-xformers' with 512 in_channels building MemoryEfficientAttnBlock with 512 in_channels... ^C

xone4 avatar Nov 24 '22 21:11 xone4

I hate saying I have this problem, too. But I do.

I am unable to use the UI now! I am NOT thankful for this!

Gushousekai195 avatar Nov 24 '22 22:11 Gushousekai195

Same - before it's said, I am on Pro+

archimedesinstitute avatar Nov 24 '22 22:11 archimedesinstitute

same!

kirkthe25 avatar Nov 24 '22 23:11 kirkthe25

Yeah, unfortunately I'm getting something along these lines as well.

illumnat avatar Nov 25 '22 01:11 illumnat

free colab.

Filarh avatar Nov 25 '22 03:11 Filarh

Free colab doesn't offer enough RAM to run this model, but I'm sure a solution will be available soon

TheLastBen avatar Nov 25 '22 07:11 TheLastBen

Hi I’m not running free. I have tried it on premium ram with the same error, heads up.

On Fri, Nov 25, 2022 at 2:27 AM, Ben @.***> wrote:

Free colab doesn't offer enough RAM to run this model, but I'm sure a solution will be available soon

— Reply to this email directly, view it on GitHub https://github.com/TheLastBen/fast-stable-diffusion/issues/612#issuecomment-1327106912, or unsubscribe https://github.com/notifications/unsubscribe-auth/A4A3AP7S6O34IUPZFWUZYHDWKBS5DANCNFSM6AAAAAASKX2ZN4 . You are receiving this because you commented.Message ID: @.***>

archimedesinstitute avatar Nov 25 '22 11:11 archimedesinstitute

confirmed. I'm oon a high ram option and i get the same message :(

outhipped avatar Nov 25 '22 11:11 outhipped

I am wondering, the v2 is installed into '/content/gdrive/MyDrive/sd/stablediffusion', while v1 is installed into '/content/gdrive/MyDrive/sd/stable-diffusion'. Is that intentional? Not sure if it's connected :) (probably not, haven't tried changing it, though)

ClemensLode avatar Nov 25 '22 11:11 ClemensLode

I hate saying I have this problem, too. But I do.

I am unable to use the UI now! I am NOT thankful for this!

Just switch back to v1 and it should work normally.

ClemensLode avatar Nov 25 '22 11:11 ClemensLode

Hi I’m not running free. I have tried it on premium ram with the same error, heads up.

@archimedesinstitute In Colab : Runtime-> Change runtime type -> Runtime shape -> High-RAM

Keep the GPU Class to standard to save compute units

TheLastBen avatar Nov 25 '22 12:11 TheLastBen

@ClemensLode the repo for the v2 is different from the v1.5 "stable-diffusion" is for the v1 and "stablediffusion" is for v2

TheLastBen avatar Nov 25 '22 12:11 TheLastBen

Hi! I can confirm I have tried this on the premium runtime. It is not a fix.

On Fri, Nov 25, 2022 at 7:03 AM, Ben @.***> wrote:

Hi I’m not running free. I have tried it on premium ram with the same error, heads up.

In Colab : Runtime-> Change runtime type -> Runtime shape -> High-RAM

Keep the GPU Class to standard to save compute units

— Reply to this email directly, view it on GitHub https://github.com/TheLastBen/fast-stable-diffusion/issues/612#issuecomment-1327392048, or unsubscribe https://github.com/notifications/unsubscribe-auth/A4A3APYMGIPJUU3WGUF3GZDWKCTI7ANCNFSM6AAAAAASKX2ZN4 . You are receiving this because you commented.Message ID: @.***>

archimedesinstitute avatar Nov 25 '22 12:11 archimedesinstitute

As well as high ram with and without premium.

On Fri, Nov 25, 2022 at 7:03 AM, Ben @.***> wrote:

Hi I’m not running free. I have tried it on premium ram with the same error, heads up.

In Colab : Runtime-> Change runtime type -> Runtime shape -> High-RAM

Keep the GPU Class to standard to save compute units

— Reply to this email directly, view it on GitHub https://github.com/TheLastBen/fast-stable-diffusion/issues/612#issuecomment-1327392048, or unsubscribe https://github.com/notifications/unsubscribe-auth/A4A3APYMGIPJUU3WGUF3GZDWKCTI7ANCNFSM6AAAAAASKX2ZN4 . You are receiving this because you commented.Message ID: @.***>

archimedesinstitute avatar Nov 25 '22 12:11 archimedesinstitute

@archimedesinstitute copy the error log when you use High-Ram setting

TheLastBen avatar Nov 25 '22 12:11 TheLastBen

LatentDiffusion: Running in v-prediction mode Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads. DiffusionWrapper has 865.91 M params. making attention of type 'vanilla-xformers' with 512 in_channels building MemoryEfficientAttnBlock with 512 in_channels... Working with z of shape (1, 4, 32, 32) = 4096 dimensions. making attention of type 'vanilla-xformers' with 512 in_channels building MemoryEfficientAttnBlock with 512 in_channels... Loading weights [a2a802b2] from /content/gdrive/MyDrive/sd/stable-diffusion-webui/models/Stable-diffusion/Copy of wojtunia.ckpt Traceback (most recent call last): File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/webui.py", line 207, in webui() File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/webui.py", line 150, in webui initialize() File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/webui.py", line 85, in initialize modules.sd_models.load_model() File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/sd_models.py", line 248, in load_model load_model_weights(sd_model, checkpoint_info) File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/sd_models.py", line 182, in load_model_weights model.load_state_dict(sd, strict=False) File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1605, in load_state_dict self.class.name, "\n\t".join(error_msgs))) RuntimeError: Error(s) in loading state_dict for LatentDiffusion: size mismatch for model.diffusion_model.input_blocks.1.1.proj_in.weight: copying a param with shape torch.Size([320, 320, 1, 1]) from checkpoint, the shape in current model is torch.Size([320, 320]). size mismatch for model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight: copying a param with shape torch.Size([320, 768]) from checkpoint, the shape in current model is torch.Size([320, 1024]). size mismatch for model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_v.weight: copying a param with shape torch.Size([320, 768]) from checkpoint, the shape in current model is torch.Size([320, 1024]). size mismatch for model.diffusion_model.input_blocks.1.1.proj_out.weight: copying a param with shape torch.Size([320, 320, 1, 1]) from checkpoint, the shape in current model is torch.Size([320, 320]). size mismatch for model.diffusion_model.input_blocks.2.1.proj_in.weight: copying a param with shape torch.Size([320, 320, 1, 1]) from checkpoint, the shape in current model is torch.Size([320, 320]). size mismatch for model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight: copying a param with shape torch.Size([320, 768]) from checkpoint, the shape in current model is torch.Size([320, 1024]). size mismatch for model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_v.weight: copying a param with shape torch.Size([320, 768]) from checkpoint, the shape in current model is torch.Size([320, 1024]). size mismatch for model.diffusion_model.input_blocks.2.1.proj_out.weight: copying a param with shape torch.Size([320, 320, 1, 1]) from checkpoint, the shape in current model is torch.Size([320, 320]). size mismatch for model.diffusion_model.input_blocks.4.1.proj_in.weight: copying a param with shape torch.Size([640, 640, 1, 1]) from checkpoint, the shape in current model is torch.Size([640, 640]). size mismatch for model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_k.weight: copying a param with shape torch.Size([640, 768]) from checkpoint, the shape in current model is torch.Size([640, 1024]). size mismatch for model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_v.weight: copying a param with shape torch.Size([640, 768]) from checkpoint, the shape in current model is torch.Size([640, 1024]). size mismatch for model.diffusion_model.input_blocks.4.1.proj_out.weight: copying a param with shape torch.Size([640, 640, 1, 1]) from checkpoint, the shape in current model is torch.Size([640, 640]). size mismatch for model.diffusion_model.input_blocks.5.1.proj_in.weight: copying a param with shape torch.Size([640, 640, 1, 1]) from checkpoint, the shape in current model is torch.Size([640, 640]). size mismatch for model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_k.weight: copying a param with shape torch.Size([640, 768]) from checkpoint, the shape in current model is torch.Size([640, 1024]). size mismatch for model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_v.weight: copying a param with shape torch.Size([640, 768]) from checkpoint, the shape in current model is torch.Size([640, 1024]). size mismatch for model.diffusion_model.input_blocks.5.1.proj_out.weight: copying a param with shape torch.Size([640, 640, 1, 1]) from checkpoint, the shape in current model is torch.Size([640, 640]). size mismatch for model.diffusion_model.input_blocks.7.1.proj_in.weight: copying a param with shape torch.Size([1280, 1280, 1, 1]) from checkpoint, the shape in current model is torch.Size([1280, 1280]). size mismatch for model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_k.weight: copying a param with shape torch.Size([1280, 768]) from checkpoint, the shape in current model is torch.Size([1280, 1024]). size mismatch for model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_v.weight: copying a param with shape torch.Size([1280, 768]) from checkpoint, the shape in current model is torch.Size([1280, 1024]). size mismatch for model.diffusion_model.input_blocks.7.1.proj_out.weight: copying a param with shape torch.Size([1280, 1280, 1, 1]) from checkpoint, the shape in current model is torch.Size([1280, 1280]). size mismatch for model.diffusion_model.input_blocks.8.1.proj_in.weight: copying a param with shape torch.Size([1280, 1280, 1, 1]) from checkpoint, the shape in current model is torch.Size([1280, 1280]). size mismatch for model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_k.weight: copying a param with shape torch.Size([1280, 768]) from checkpoint, the shape in current model is torch.Size([1280, 1024]). size mismatch for model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_v.weight: copying a param with shape torch.Size([1280, 768]) from checkpoint, the shape in current model is torch.Size([1280, 1024]). size mismatch for model.diffusion_model.input_blocks.8.1.proj_out.weight: copying a param with shape torch.Size([1280, 1280, 1, 1]) from checkpoint, the shape in current model is torch.Size([1280, 1280]). size mismatch for model.diffusion_model.middle_block.1.proj_in.weight: copying a param with shape torch.Size([1280, 1280, 1, 1]) from checkpoint, the shape in current model is torch.Size([1280, 1280]). size mismatch for model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_k.weight: copying a param with shape torch.Size([1280, 768]) from checkpoint, the shape in current model is torch.Size([1280, 1024]). size mismatch for model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_v.weight: copying a param with shape torch.Size([1280, 768]) from checkpoint, the shape in current model is torch.Size([1280, 1024]). size mismatch for model.diffusion_model.middle_block.1.proj_out.weight: copying a param with shape torch.Size([1280, 1280, 1, 1]) from checkpoint, the shape in current model is torch.Size([1280, 1280]). size mismatch for model.diffusion_model.output_blocks.3.1.proj_in.weight: copying a param with shape torch.Size([1280, 1280, 1, 1]) from checkpoint, the shape in current model is torch.Size([1280, 1280]). size mismatch for model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_k.weight: copying a param with shape torch.Size([1280, 768]) from checkpoint, the shape in current model is torch.Size([1280, 1024]). size mismatch for model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_v.weight: copying a param with shape torch.Size([1280, 768]) from checkpoint, the shape in current model is torch.Size([1280, 1024]). size mismatch for model.diffusion_model.output_blocks.3.1.proj_out.weight: copying a param with shape torch.Size([1280, 1280, 1, 1]) from checkpoint, the shape in current model is torch.Size([1280, 1280]). size mismatch for model.diffusion_model.output_blocks.4.1.proj_in.weight: copying a param with shape torch.Size([1280, 1280, 1, 1]) from checkpoint, the shape in current model is torch.Size([1280, 1280]). size mismatch for model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_k.weight: copying a param with shape torch.Size([1280, 768]) from checkpoint, the shape in current model is torch.Size([1280, 1024]). size mismatch for model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_v.weight: copying a param with shape torch.Size([1280, 768]) from checkpoint, the shape in current model is torch.Size([1280, 1024]). size mismatch for model.diffusion_model.output_blocks.4.1.proj_out.weight: copying a param with shape torch.Size([1280, 1280, 1, 1]) from checkpoint, the shape in current model is torch.Size([1280, 1280]). size mismatch for model.diffusion_model.output_blocks.5.1.proj_in.weight: copying a param with shape torch.Size([1280, 1280, 1, 1]) from checkpoint, the shape in current model is torch.Size([1280, 1280]). size mismatch for model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_k.weight: copying a param with shape torch.Size([1280, 768]) from checkpoint, the shape in current model is torch.Size([1280, 1024]). size mismatch for model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_v.weight: copying a param with shape torch.Size([1280, 768]) from checkpoint, the shape in current model is torch.Size([1280, 1024]). size mismatch for model.diffusion_model.output_blocks.5.1.proj_out.weight: copying a param with shape torch.Size([1280, 1280, 1, 1]) from checkpoint, the shape in current model is torch.Size([1280, 1280]). size mismatch for model.diffusion_model.output_blocks.6.1.proj_in.weight: copying a param with shape torch.Size([640, 640, 1, 1]) from checkpoint, the shape in current model is torch.Size([640, 640]). size mismatch for model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_k.weight: copying a param with shape torch.Size([640, 768]) from checkpoint, the shape in current model is torch.Size([640, 1024]). size mismatch for model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_v.weight: copying a param with shape torch.Size([640, 768]) from checkpoint, the shape in current model is torch.Size([640, 1024]). size mismatch for model.diffusion_model.output_blocks.6.1.proj_out.weight: copying a param with shape torch.Size([640, 640, 1, 1]) from checkpoint, the shape in current model is torch.Size([640, 640]). size mismatch for model.diffusion_model.output_blocks.7.1.proj_in.weight: copying a param with shape torch.Size([640, 640, 1, 1]) from checkpoint, the shape in current model is torch.Size([640, 640]). size mismatch for model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_k.weight: copying a param with shape torch.Size([640, 768]) from checkpoint, the shape in current model is torch.Size([640, 1024]). size mismatch for model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_v.weight: copying a param with shape torch.Size([640, 768]) from checkpoint, the shape in current model is torch.Size([640, 1024]). size mismatch for model.diffusion_model.output_blocks.7.1.proj_out.weight: copying a param with shape torch.Size([640, 640, 1, 1]) from checkpoint, the shape in current model is torch.Size([640, 640]). size mismatch for model.diffusion_model.output_blocks.8.1.proj_in.weight: copying a param with shape torch.Size([640, 640, 1, 1]) from checkpoint, the shape in current model is torch.Size([640, 640]). size mismatch for model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_k.weight: copying a param with shape torch.Size([640, 768]) from checkpoint, the shape in current model is torch.Size([640, 1024]). size mismatch for model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_v.weight: copying a param with shape torch.Size([640, 768]) from checkpoint, the shape in current model is torch.Size([640, 1024]). size mismatch for model.diffusion_model.output_blocks.8.1.proj_out.weight: copying a param with shape torch.Size([640, 640, 1, 1]) from checkpoint, the shape in current model is torch.Size([640, 640]). size mismatch for model.diffusion_model.output_blocks.9.1.proj_in.weight: copying a param with shape torch.Size([320, 320, 1, 1]) from checkpoint, the shape in current model is torch.Size([320, 320]). size mismatch for model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_k.weight: copying a param with shape torch.Size([320, 768]) from checkpoint, the shape in current model is torch.Size([320, 1024]). size mismatch for model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_v.weight: copying a param with shape torch.Size([320, 768]) from checkpoint, the shape in current model is torch.Size([320, 1024]). size mismatch for model.diffusion_model.output_blocks.9.1.proj_out.weight: copying a param with shape torch.Size([320, 320, 1, 1]) from checkpoint, the shape in current model is torch.Size([320, 320]). size mismatch for model.diffusion_model.output_blocks.10.1.proj_in.weight: copying a param with shape torch.Size([320, 320, 1, 1]) from checkpoint, the shape in current model is torch.Size([320, 320]). size mismatch for model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_k.weight: copying a param with shape torch.Size([320, 768]) from checkpoint, the shape in current model is torch.Size([320, 1024]). size mismatch for model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_v.weight: copying a param with shape torch.Size([320, 768]) from checkpoint, the shape in current model is torch.Size([320, 1024]). size mismatch for model.diffusion_model.output_blocks.10.1.proj_out.weight: copying a param with shape torch.Size([320, 320, 1, 1]) from checkpoint, the shape in current model is torch.Size([320, 320]). size mismatch for model.diffusion_model.output_blocks.11.1.proj_in.weight: copying a param with shape torch.Size([320, 320, 1, 1]) from checkpoint, the shape in current model is torch.Size([320, 320]). size mismatch for model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_k.weight: copying a param with shape torch.Size([320, 768]) from checkpoint, the shape in current model is torch.Size([320, 1024]). size mismatch for model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_v.weight: copying a param with shape torch.Size([320, 768]) from checkpoint, the shape in current model is torch.Size([320, 1024]). size mismatch for model.diffusion_model.output_blocks.11.1.proj_out.weight: copying a param with shape torch.Size([320, 320, 1, 1]) from checkpoint, the shape in current model is torch.Size([320, 320]).

outhipped avatar Nov 25 '22 14:11 outhipped

@outhipped if you're using a 1.5 model, you need to set it to 1.5 in the download model cell and rerun the requirements cell

TheLastBen avatar Nov 25 '22 15:11 TheLastBen

Edit:

OK, setting it to High-RAM and deleting the 1.5 ckpt file did the trick for me and I was able to create some images. Awesome, thanks!

It feels... different, though, haven't been able to create any better looking images yet :)

ClemensLode avatar Nov 25 '22 16:11 ClemensLode

@ClemensLode the v2 is simply awful, check the subreddit to get the idea https://www.reddit.com/r/StableDiffusion/

TheLastBen avatar Nov 25 '22 18:11 TheLastBen

Indeed! But it's good to keep up with development. Thanks for the effort!

ClemensLode avatar Nov 25 '22 18:11 ClemensLode

Yeah I’m not really stoked on it until there’s a clear path for finetuning on the model.

On Fri, Nov 25, 2022 at 1:05 PM, Ben @.***> wrote:

@ClemensLode https://github.com/ClemensLode the v2 is simply awful, check the subreddit to get the idea https://www.reddit.com/r/StableDiffusion/

— Reply to this email directly, view it on GitHub https://github.com/TheLastBen/fast-stable-diffusion/issues/612#issuecomment-1327758939, or unsubscribe https://github.com/notifications/unsubscribe-auth/A4A3AP7G3KMCU2U5BQ7ZMKTWKD5UXANCNFSM6AAAAAASKX2ZN4 . You are receiving this because you were mentioned.Message ID: @.***>

archimedesinstitute avatar Nov 25 '22 18:11 archimedesinstitute

finetuning the model requires a lot of computing power, dreambooth alone isn't gonna cut it

TheLastBen avatar Nov 25 '22 18:11 TheLastBen

Hmmmm, good to know.

On Fri, Nov 25, 2022 at 1:37 PM, Ben @.***> wrote:

finetuning the model requires a lot of computing power, dreambooth alone isn't gonna cut it

— Reply to this email directly, view it on GitHub https://github.com/TheLastBen/fast-stable-diffusion/issues/612#issuecomment-1327777987, or unsubscribe https://github.com/notifications/unsubscribe-auth/A4A3AP6Q5CTMENTLS4Y2ZOLWKEBQBANCNFSM6AAAAAASKX2ZN4 . You are receiving this because you were mentioned.Message ID: @.***>

archimedesinstitute avatar Nov 25 '22 18:11 archimedesinstitute

so how do we use 1.5. i just get this error

bayoumedic avatar Nov 26 '22 01:11 bayoumedic

if you're using a 1.5 model, you need to set it to 1.5 in the download model cell and rerun the requirements cell

TheLastBen avatar Nov 26 '22 02:11 TheLastBen