Help Needed with Dataset Preparation and Fine-Tuning Process
Hi everyone,
I’m trying to fine-tune the model and have been following their paper for guidance. While I understand the dataset originates from Objaverse, I still have several questions about the setup and process:
- Where can I find
logs/instant-nerf-large-train/checkpoints/last.ckpt? Is it a pretrained checkpoint provided somewhere, or do we need to train it from scratch? - I believe filtered_obj_name.json is generated during the preprocessing stage of the Objaverse dataset. Does anyone know how this preprocessing is done, or where the relevant script might be?
- What exactly is rendering_random_32views? Is it a standard rendering of the dataset, or does it require a specific rendering pipeline?
For reference, here’s the configuration file from the config/configs/instant-mesh-large-train.yaml
model:
base_learning_rate: 4.0e-05
target: src.model_mesh.MVRecon
params:
init_ckpt: logs/instant-nerf-large-train/checkpoints/last.ckpt
input_size: 320
render_size: 512
lrm_generator_config:
target: src.models.lrm_mesh.InstantMesh
params:
encoder_feat_dim: 768
encoder_freeze: false
encoder_model_name: facebook/dino-vitb16
transformer_dim: 1024
transformer_layers: 16
transformer_heads: 16
triplane_low_res: 32
triplane_high_res: 64
triplane_dim: 80
rendering_samples_per_ray: 128
grid_res: 128
grid_scale: 2.1
data:
target: src.data.objaverse.DataModuleFromConfig
params:
batch_size: 2
num_workers: 8
train:
target: src.data.objaverse.ObjaverseData
params:
root_dir: data/objaverse
meta_fname: filtered_obj_name.json
input_image_dir: rendering_random_32views
target_image_dir: rendering_random_32views
input_view_num: 6
target_view_num: 4
total_view_n: 32
fov: 50
camera_rotation: true
validation: false
validation:
target: src.data.objaverse.ValidationData
params:
root_dir: data/valid_samples
input_view_num: 6
input_image_size: 320
fov: 30
lightning:
modelcheckpoint:
params:
every_n_train_steps: 2000
save_top_k: -1
save_last: true
callbacks: {}
trainer:
benchmark: true
max_epochs: -1
val_check_interval: 1000
num_sanity_val_steps: 0
accumulate_grad_batches: 1
check_val_every_n_epoch: null # if not set this, validation does not run
I have the rendering code for the data set, including the filtered_obj_name.json configuration file, but I don't have the rendering code for val because val and the training set have different perspectives
Did you find the logs/instant-nerf-large-train/checkpoints/last.ckpt ?
我有数据集的渲染代码,包括 filtered_obj_name.json 配置文件,但我没有 val 的渲染代码,因为 val 和训练集具有不同的视角
我想要微调第一阶段的zero123++这一部分 您是否有这部分数据集渲染的脚本