Machine-Learning-Explained icon indicating copy to clipboard operation
Machine-Learning-Explained copied to clipboard

Learn the theory, math and code behind different machine learning algorithms and techniques.

Machine-Learning-Explained

This repository contains explanations and implementations of machine learning algorithms and concepts. The explanations are also available as articles on my website.

Machine Learning Algorithms

  • Linear Regression
  • Logistic Regression
  • K Nearest Neighbors
  • Decision Tree
  • KMeans
  • Mean Shift
  • DBSCAN
  • Random Forest
  • Adaboost
  • Gradient Boosting
  • Principal Component Analysis (PCA)
  • Kernel PCA
  • Linear Discriminant Analysis (LDA)

Optimizers

  • Gradient Descent
  • Adagrad
  • Adadelta
  • RMSprop
  • Adam
  • AdaMax
  • Nadam
  • AMSGrad
  • AdamW
  • QHM
  • QHAdam
  • RAdam

Activation Functions

  • ELU
  • GELU
  • Leaky RELU
  • Mish
  • RELU
  • SELU
  • Sigmoid
  • SILU
  • Softmax
  • Softplus
  • Tanh

Metrics

  • Binary Cross Entropy
  • Categorical Crossentropy
  • Accuracy Score
  • Confusion Matrix
  • Precision
  • Recall
  • F1-Score
  • Receiver operating characteristic (ROC)
  • Area under the ROC curve (AUC)
  • Hinge Loss
  • KL Divergence
  • Brier Score
  • Mean Squared Error
  • Mean Squared Logaritmic Error
  • Mean Absolute Error
  • Mean Absolute Percentage Error
  • Median Absolute Error
  • Cosine Similartiy
  • R2 Score
  • Tweedie Deviance
  • D^2 Score
  • Huber loss
  • Log Cosh Loss

Ensemble Methods

  • Averaging
  • Bagging
  • Blending
  • Majority Vote
  • Stacking
  • Stacking retrained
  • Weighted Average

Contributing

Contributions to Machine-Learning-Explained are always welcome, whether code or documentation changes. For contribution guidelines, please see the CONTRIBUTING.md file.

License

This project is licensed under the MIT License - see the LICENSE.md file for details.