Results 7 comments of Tamer A. Abdelmigid

I would like to second this. I had a case where improved forecasting performance was achieved by preprocessing the data using EMD and its variants. The case was a univariate...

@colin99d try ``` pl_trainer_kwargs={ "enable_model_summary": False, }, ```

@colin99d I'm currently using this: ``` warnings.filterwarnings("ignore") logging.basicConfig(level=logging.CRITICAL) logging.getLogger("darts.models").setLevel(logging.CRITICAL) logging.getLogger("pytorch_lightning").setLevel(logging.CRITICAL) logging.getLogger("darts.models.forecasting.pl_forecasting_module").setLevel(logging.CRITICAL) logging.getLogger("darts.models.forecasting.tcn_model").setLevel(logging.CRITICAL) logging.getLogger("darts.models.forecasting.nbeats").setLevel(logging.CRITICAL) logging.getLogger("darts.models.forecasting.NHiTSModel").setLevel(logging.CRITICAL) logging.getLogger("darts.models.forecasting.nhits").setLevel(logging.CRITICAL) logging.getLogger("darts.models.forecasting.torch_forecasting_model").setLevel(logging.CRITICAL) logging.getLogger("darts.models.forecasting.forecasting_model").setLevel(logging.CRITICAL) logging.getLogger("darts.models.forecasting.baselines").setLevel(logging.CRITICAL) logging.getLogger("pytorch_lightning.accelerators.gpu").setLevel(logging.CRITICAL) logging.getLogger("darts.timeseries").setLevel(logging.CRITICAL) logging.getLogger("darts.utils.utils").setLevel(logging.CRITICAL) logging.getLogger("darts.utils.torch").setLevel(logging.CRITICAL) logging.getLogger("darts.models.forecasting.tft_model").setLevel(logging.CRITICAL) logging.getLogger("darts.models.forecasting.tft_submodels").setLevel(logging.CRITICAL) logging.getLogger("darts.utils.data.training_dataset").setLevel(logging.CRITICAL) logging.getLogger("darts.utils.data.horizon_based_dataset").setLevel(logging.CRITICAL) logging.getLogger("darts.utils.statistics").setLevel(logging.CRITICAL) logging.getLogger("darts.dataprocessing.transformers.scaler").setLevel(logging.CRITICAL) logging.getLogger("darts.dataprocessing.transformers.fittable_data_transformer").setLevel(logging.CRITICAL) ```...

Error persist in Darts Version 0.21 The problem exists with historical_forecasts() it gives an error `point (int) should be a valid index in series` the problem is encountered regardless of...

Hey @hrzn, sadly that's not the case here. Here is a minimum code: ``` import numpy as np import pandas as pd import matplotlib.pyplot as plt from darts import TimeSeries...

It would be super helpful if you could include an example on using PopulationBasedTraining of ray tune to tune a learning rate schedule of DARTS Torch models.