mol_property
mol_property copied to clipboard
Prediction of pKa from chemical structure using machine learning approaches,molecular similarity and so on
mol_property
Prediction of pKa from chemical structure using machine learning approaches.
The repository also include some other functions, such as calculating a variety of molecular properties, and finding a most similar molecule ...
mol_property/
├── pka/ # Prediction of pKa from chemical structure using machine learning approaches.
│
├── similarity/ # molecular similarity: find the most similar molecules
│
├── property_api.py # calculate some other molecular properties, such as solubility, number of Rotatable Bonds.
Properties
- pKa
ref: Prediction of pKa from chemical structure using free and open-source tools
- logS
ref: github: solubility
install
- python package
git clone https://github.com/TVect/mol_property.git
cd mol_property
python setup.py install
- conda package
reference: https://github.com/fastai/fastai/blob/master/conda/meta.yaml
git clone https://github.com/TVect/mol_property.git
cd mol_property
python setup.py sdist
conda build conda/
Usage
from rdkit import Chem
from mol_property import property_api
smi = "Brc(cc1)cc2c1NCC2"
mol = Chem.MolFromSmiles(smi)
print("logP:", get_logP(mol))
# print("logD:", get_logD(mol))
# print("physioCharge:", get_physioCharge(mol))
print("HBA:", get_numHBA(mol))
print("HBD:", get_numHBD(mol))
print("TPSA:", get_polarSurfaceArea(mol))
print("Rotatable Bond:", get_numRotatableBonds(mol))
print("pKa:", get_pKa(mol))
print("logS:", get_logS(mol))
print("numRings:", get_numRings(mol))
# print("Bioavailability", get_bioavailability(mol))
print("ruleOfFive:", get_ruleOfFive(mol))
print("veberRule:", get_veberRule(mol))
print("ChemicalFormula:", get_chemicalFormula(mol))
print("Mass:", get_molecularMass(mol))
print("smiles:", get_SMILES(mol))