Please help me ! I run it in Jetson orin 64G,is aarch64
cuda_11.8.r11.8,pytorch2.0.0,show error after click "Sample"
RuntimeError: CUDA error: invalid device function Compile with TORCH_USE_CUDA_DSA
to enable device-side assertions.
Traceback:
File "/home/dongkuang/anaconda3/envs/mystability/lib/python3.8/site-packages/streamlit/runtime/scriptrunner/script_runner.py", line 552, in _run_script
exec(code, module.dict)
File "/home/dongkuang/generative-models/scripts/demo/sampling.py", line 318, in
out = run_txt2img(
File "/home/dongkuang/generative-models/scripts/demo/sampling.py", line 146, in run_txt2img
out = do_sample(
File "/home/dongkuang/generative-models/scripts/demo/streamlit_helpers.py", line 579, in do_sample
samples_z = sampler(denoiser, randn, cond=c, uc=uc)
File "/home/dongkuang/generative-models/sgm/modules/diffusionmodules/sampling.py", line 123, in call
x = self.sampler_step(
File "/home/dongkuang/generative-models/sgm/modules/diffusionmodules/sampling.py", line 102, in sampler_step
denoised = self.denoise(x, denoiser, sigma_hat, cond, uc)
File "/home/dongkuang/generative-models/sgm/modules/diffusionmodules/sampling.py", line 58, in denoise
denoised = denoiser(*self.guider.prepare_inputs(x, sigma, cond, uc))
File "/home/dongkuang/generative-models/scripts/demo/streamlit_helpers.py", line 573, in denoiser
return model.denoiser(
File "/home/dongkuang/generative-models/sgm/modules/diffusionmodules/denoiser.py", line 28, in call
return network(input * c_in, c_noise, cond) * c_out + input * c_skip
File "/home/dongkuang/anaconda3/envs/mystability/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "/home/dongkuang/generative-models/sgm/modules/diffusionmodules/wrappers.py", line 28, in forward
return self.diffusion_model(
File "/home/dongkuang/anaconda3/envs/mystability/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "/home/dongkuang/generative-models/sgm/modules/diffusionmodules/openaimodel.py", line 993, in forward
h = module(h, emb, context)
File "/home/dongkuang/anaconda3/envs/mystability/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "/home/dongkuang/generative-models/sgm/modules/diffusionmodules/openaimodel.py", line 100, in forward
x = layer(x, context)
File "/home/dongkuang/anaconda3/envs/mystability/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "/home/dongkuang/generative-models/sgm/modules/attention.py", line 627, in forward
x = block(x, context=context[i])
File "/home/dongkuang/anaconda3/envs/mystability/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "/home/dongkuang/generative-models/sgm/modules/attention.py", line 459, in forward
return checkpoint(
File "/home/dongkuang/generative-models/sgm/modules/diffusionmodules/util.py", line 165, in checkpoint
return CheckpointFunction.apply(func, len(inputs), *args)
File "/home/dongkuang/anaconda3/envs/mystability/lib/python3.8/site-packages/torch/autograd/function.py", line 506, in apply
return super().apply(*args, **kwargs) # type: ignore[misc]
File "/home/dongkuang/generative-models/sgm/modules/diffusionmodules/util.py", line 182, in forward
output_tensors = ctx.run_function(*ctx.input_tensors)
File "/home/dongkuang/generative-models/sgm/modules/attention.py", line 467, in _forward
self.attn1(
File "/home/dongkuang/anaconda3/envs/mystability/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "/home/dongkuang/generative-models/sgm/modules/attention.py", line 355, in forward
out = xformers.ops.memory_efficient_attention(
File "/home/dongkuang/anaconda3/envs/mystability/lib/python3.8/site-packages/xformers/ops/fmha/init.py", line 193, in memory_efficient_attention
return _memory_efficient_attention(
File "/home/dongkuang/anaconda3/envs/mystability/lib/python3.8/site-packages/xformers/ops/fmha/init.py", line 291, in _memory_efficient_attention
return _memory_efficient_attention_forward(
File "/home/dongkuang/anaconda3/envs/mystability/lib/python3.8/site-packages/xformers/ops/fmha/init.py", line 311, in memory_efficient_attention_forward
out, * = op.apply(inp, needs_gradient=False)
File "/home/dongkuang/anaconda3/envs/mystability/lib/python3.8/site-packages/xformers/ops/fmha/flash.py", line 293, in apply
out, softmax_lse, rng_state = cls.OPERATOR(
File "/home/dongkuang/anaconda3/envs/mystability/lib/python3.8/site-packages/torch/_ops.py", line 502, in call
return self._op(*args, **kwargs or {})
File "/home/dongkuang/anaconda3/envs/mystability/lib/python3.8/site-packages/xformers/ops/fmha/flash.py", line 86, in _flash_fwd
) = _C_flashattention.varlen_fwd(
I have the same problem with python3.11, but succeed with python3.10 !!!
I have the same problem,How to solve?
I have the same problem with python3.11, but succeed with python3.10 !!!