FeatherNets_Face-Anti-spoofing-Attack-Detection-Challenge-CVPR2019
                                
                                
                                
                                    FeatherNets_Face-Anti-spoofing-Attack-Detection-Challenge-CVPR2019 copied to clipboard
                            
                            
                            
                        Code for 3rd Place Solution in Face Anti-spoofing Attack Detection Challenge @ CVPR2019,model only 0.35M!!! 1.88ms(CPU)
过拟合问题
你好,我按照原代码的设置,用FeatherNetB在CASIA_SURF的原始数据集的深度图上进行训练和验证的时候发现训练集的accuracy和loss曲线是正常的,验证集上的accuracy是先升后降,loss是先降后升的,但是best模型的ACER值又能达到论文上面的精度,请问这个问题该怎么处理?
您好,在 RGB-D-NI數據集中,深度圖與近紅外圖的分辨率是一樣的,但是可見光的分辨率與近紅外和深度圖的分辨率都不一樣,這3種圖像該怎麼融合呢?您這邊是分別預測的嗎
Hello, could you provide a simple script to classify a single image? Really confused about the 1024 vector feature map, and all other issues are in chinese, so I dont...
你好,请问如何使用你们的预训练模型预测一张人脸图片是否为真人,有相关的介绍或者预测脚本吗?
RuntimeError: Error(s) in loading state_dict for DataParallel: size mismatch for module.fish.fish.9.4.1.weight: copying a param with shape torch.Size([1056]) from checkpoint, the shape in current model is torch.Size([1000, 1056, 1, 1]). size...
``` train_dataset = CASIA( transforms.Compose([ transforms.RandomResizedCrop(img_size), transforms.RandomHorizontalFlip(), transforms.ToTensor(), ColorAugmentation(), normalize, ]),phase_train=True) val_dataset = CASIA( transforms.Compose([ transforms.Resize(int(256 * ratio)), transforms.CenterCrop(img_size), transforms.ToTensor(), normalize, ]),phase_train=False,phase_test=args.phase_test) ```
nohup python main.py --config="cfgs/fishnet150-32.yaml" --b 32 --lr 0.01 --every-decay 30 --fl- gamma 2 >> fishnet150-train.log Traceback (most recent call last): File "main.py", line 406, in main() File "main.py", line 113,...
Hi @SoftwareGift If you trained model with only RGB image, please provide me the results. Thanks for your contributions.