diffusers
diffusers copied to clipboard
Not able to download model from HuggingFace.
Describe the bug
I am trying to train face on the Stable Diffusion model, but I am getting this error on the colab file cell: https://colab.research.google.com/github/ShivamShrirao/diffusers/blob/main/examples/dreambooth/DreamBooth_Stable_Diffusion.ipynb#scrollTo=jjcSXTp-u-Eg
Error:
2023-03-06 23:03:41.580469: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2023-03-06 23:03:42.713916: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/lib64-nvidia
2023-03-06 23:03:42.714048: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/lib64-nvidia
2023-03-06 23:03:42.714070: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
The following values were not passed to `accelerate launch` and had defaults used instead:
`--num_processes` was set to a value of `1`
`--num_machines` was set to a value of `1`
`--mixed_precision` was set to a value of `'no'`
`--dynamo_backend` was set to a value of `'no'`
To avoid this warning pass in values for each of the problematic parameters or run `accelerate config`.
2023-03-06 23:03:46.845653: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/lib64-nvidia
2023-03-06 23:03:46.845754: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/lib64-nvidia
2023-03-06 23:03:46.845773: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
/usr/local/lib/python3.8/dist-packages/accelerate/accelerator.py:231: FutureWarning: `logging_dir` is deprecated and will be removed in version 0.18.0 of 🤗 Accelerate. Use `project_dir` instead.
warnings.warn(
Traceback (most recent call last):
File "/usr/local/lib/python3.8/dist-packages/diffusers/configuration_utils.py", line 326, in load_config
config_file = hf_hub_download(
File "/usr/local/lib/python3.8/dist-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
validate_repo_id(arg_value)
File "/usr/local/lib/python3.8/dist-packages/huggingface_hub/utils/_validators.py", line 172, in validate_repo_id
raise HFValidationError(
huggingface_hub.utils._validators.HFValidationError: Repo id must use alphanumeric chars or '-', '_', '.', '--' and '..' are forbidden, '-' and '.' cannot start or end the name, max length is 96: ''.
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "train_dreambooth.py", line 869, in <module>
main(args)
File "train_dreambooth.py", line 473, in main
pipeline = StableDiffusionPipeline.from_pretrained(
File "/usr/local/lib/python3.8/dist-packages/diffusers/pipelines/pipeline_utils.py", line 543, in from_pretrained
config_dict = cls.load_config(
File "/usr/local/lib/python3.8/dist-packages/diffusers/configuration_utils.py", line 363, in load_config
raise EnvironmentError(
OSError: We couldn't connect to 'https://huggingface.co' to load this model, couldn't find it in the cached files and it looks like is not the path to a directory containing a model_index.json file.
Checkout your internet connection or see how to run the library in offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'.
Traceback (most recent call last):
File "/usr/local/bin/accelerate", line 8, in <module>
sys.exit(main())
File "/usr/local/lib/python3.8/dist-packages/accelerate/commands/accelerate_cli.py", line 45, in main
args.func(args)
File "/usr/local/lib/python3.8/dist-packages/accelerate/commands/launch.py", line 1097, in launch_command
simple_launcher(args)
File "/usr/local/lib/python3.8/dist-packages/accelerate/commands/launch.py", line 552, in simple_launcher
raise subprocess.CalledProcessError(returncode=process.returncode, cmd=cmd)
subprocess.CalledProcessError: Command '['/usr/bin/python3', 'train_dreambooth.py', '--pretrained_model_name_or_path=', '--pretrained_vae_name_or_path=stabilityai/sd-vae-ft-mse', '--output_dir=', '--revision=fp16', '--with_prior_preservation', '--prior_loss_weight=1.0', '--seed=1337', '--resolution=512', '--train_batch_size=1', '--train_text_encoder', '--mixed_precision=fp16', '--use_8bit_adam', '--gradient_accumulation_steps=1', '--learning_rate=1e-6', '--lr_scheduler=constant', '--lr_warmup_steps=224', '--num_class_images=336', '--sample_batch_size=4', '--max_train_steps=2240', '--save_interval=10000', '--save_sample_prompt=Photo of {INSTANCE_NAME} {CLASS_NAME}, highly detailed, 8k, uhd, studio lighting, beautiful', '--concepts_list=concepts_list.json']' returned non-zero exit status 1.
Reproduction
!accelerate launch train_dreambooth.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--pretrained_vae_name_or_path="stabilityai/sd-vae-ft-mse" \
--output_dir=$OUTPUT_DIR \
--revision="fp16" \
--with_prior_preservation --prior_loss_weight=1.0 \
--seed=1337 \
--resolution=512 \
--train_batch_size=1 \
--train_text_encoder \
--mixed_precision="fp16" \
--use_8bit_adam \
--gradient_accumulation_steps=1 \
--learning_rate=1e-6 \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--num_class_images=50 \
--sample_batch_size=4 \
--max_train_steps=800 \
--save_interval=10000 \
--save_sample_prompt="photo of zwx dog" \
--concepts_list="concepts_list.json"
Reduce the --save_interval
to lower than --max_train_steps
to save weights from intermediate steps.
--save_sample_prompt
can be same as --instance_prompt
to generate intermediate samples (saved along with weights in samples directory).
Logs
No response
System Info
Running on the standard Google Colab Environment