personality-detection
personality-detection copied to clipboard
Process_data.py run error, display memoryError, I use win10, 8G memory, how to solve?
python process_data.py ./GoogleNews-vectors-negative300.bin ./essays.csv ./mairesse.csv loading data... data loaded! number of status: 2467 vocab size: 30391 max sentence length: 149 loading word2vec vectors... Traceback (most recent call last): File "process_data.py", line 171, in w2v = load_bin_vec(w2v_file, vocab) File "process_data.py", line 104, in load_bin_vec word.append(ch) MemoryError
I feel that this problem is very likely because the binary data set read. /GoogleNews-vectors-negative300.bin is too large Ask how to solve it? ? ? How do everyone run?
import numpy as np import theano import pickle from collections import defaultdict import sys, re import pandas as pd import csv import getpass
def build_data_cv(datafile, cv=10, clean_string=True): """ Loads data and split into 10 folds. """ revs = [] vocab = defaultdict(float)
with open(datafile, "r") as csvf:
csvreader=csv.reader(csvf,delimiter=',',quotechar='"')
first_line=True
for line in csvreader:
if first_line:
first_line=False
continue
status=[]
sentences=re.split(r'[.?]', line[1].strip())
try:
sentences.remove('')
except ValueError:
None
for sent in sentences:
if clean_string:
orig_rev = clean_str(sent.strip())
if orig_rev=='':
continue
words = set(orig_rev.split())
splitted = orig_rev.split()
if len(splitted)>150:
orig_rev=[]
splits=int(np.floor(len(splitted)/20))
for index in range(splits):
orig_rev.append(' '.join(splitted[index*20:(index+1)*20]))
if len(splitted)>splits*20:
orig_rev.append(' '.join(splitted[splits*20:]))
status.extend(orig_rev)
else:
status.append(orig_rev)
else:
orig_rev = sent.strip().lower()
words = set(orig_rev.split())
status.append(orig_rev)
for word in words:
vocab[word] += 1
datum = {"y0":1 if line[2].lower()=='y' else 0,
"y1":1 if line[3].lower()=='y' else 0,
"y2":1 if line[4].lower()=='y' else 0,
"y3":1 if line[5].lower()=='y' else 0,
"y4":1 if line[6].lower()=='y' else 0,
"text": status,
"user": line[0],
"num_words": np.max([len(sent.split()) for sent in status]),
"split": np.random.randint(0,cv)}
revs.append(datum)
return revs, vocab
def get_W(word_vecs, k=300): """ Get word matrix. W[i] is the vector for word indexed by i """ vocab_size = len(word_vecs) word_idx_map = dict() W = np.zeros(shape=(vocab_size+1, k), dtype=theano.config.floatX) W[0] = np.zeros(k, dtype=theano.config.floatX) i = 1 for word in word_vecs: W[i] = word_vecs[word] word_idx_map[word] = i i += 1 return W, word_idx_map
def load_bin_vec(fname, vocab): """ Loads 300x1 word vecs from Google (Mikolov) word2vec """ word_vecs = {} with open(fname, "rb") as f: header = f.readline() vocab_size, layer1_size = list(map(int, header.split())) binary_len = np.dtype(theano.config.floatX).itemsize * layer1_size for line in range(vocab_size): word = [] ch = f.read(1) if ch == ' ': word = ''.join(word) break if ch != '\n': word.append(ch) if tuple(word) in vocab: word_vecs[tuple(word)] = np.fromstring(f.read(binary_len), dtype=theano.config.floatX) else: f.read(binary_len) return word_vecs
def add_unknown_words(word_vecs, vocab, min_df=1, k=300): """ For words that occur in at least min_df documents, create a separate word vector. 0.25 is chosen so the unknown vectors have (approximately) same variance as pre-trained ones """ for word in vocab: if word not in word_vecs and vocab[word] >= min_df: word_vecs[word] = np.random.uniform(-0.25,0.25,k) print(word)
def clean_str(string, TREC=False): """ Tokenization/string cleaning for all datasets except for SST. Every dataset is lower cased except for TREC """ string = re.sub(r"[^A-Za-z0-9(),!?'`]", " ", string) string = re.sub(r"'s", " 's ", string) string = re.sub(r"'ve", " have ", string) string = re.sub(r"n't", " not ", string) string = re.sub(r"'re", " are ", string) string = re.sub(r"'d" , " would ", string) string = re.sub(r"'ll", " will ", string) string = re.sub(r",", " , ", string) string = re.sub(r"!", " ! ", string) string = re.sub(r"(", " ( ", string) string = re.sub(r")", " ) ", string) string = re.sub(r"?", " ? ", string)
string = re.sub(r"[a-zA-Z]{4,}", "", string)
string = re.sub(r"\s{2,}", " ", string)
return string.strip() if TREC else string.strip().lower()
def clean_str_sst(string): """ Tokenization/string cleaning for the SST dataset """ string = re.sub(r"[^A-Za-z0-9(),!?'`]", " ", string) string = re.sub(r"\s{2,}", " ", string) return string.strip().lower()
def get_mairesse_features(file_name): feats={} with open(file_name, "r") as csvf: csvreader=csv.reader(csvf,delimiter=',',quotechar='"') for line in csvreader: feats[line[0]]=[float(f) for f in line[1:]] return feats
if name=="main": w2v_file = sys.argv[1] data_folder = sys.argv[2] mairesse_file = sys.argv[3] print("loading data...", end=' ') revs, vocab = build_data_cv(data_folder, cv=10, clean_string=True) num_words=pd.DataFrame(revs)["num_words"] max_l = np.max(num_words) print("data loaded!") print("number of status: " + str(len(revs))) print("vocab size: " + str(len(vocab))) print("max sentence length: " + str(max_l)) print("loading word2vec vectors...", end=' ') w2v = load_bin_vec(w2v_file, vocab) print("word2vec loaded!") print("num words already in word2vec: " + str(len(w2v))) add_unknown_words(w2v, vocab) W, word_idx_map = get_W(w2v) rand_vecs = {} add_unknown_words(rand_vecs, vocab) W2, _ = get_W(rand_vecs) mairesse = get_mairesse_features(mairesse_file) pickle.dump([revs, W, W2, word_idx_map, vocab, mairesse], open("essays_mairesse.p", "wb")) print("dataset created!")
Copy paste that code it optimizes and also resolves the encoding issue :)
Copy paste that code it optimizes and also resolves the encoding issue :)
Thank you for solving this code problem , however, the code indentation you sent does not seem to be uploaded. So could you please give the code with indentation, thanks.
Could anyone please submit a PR?
@soujanyaporia I submitted a PR. I have made some other improvements in the training classes too. In my forked repository, you can see them. I can submit PR for them too.
I have done some changes and now process_data.py file is working Submitted a PR :+1: This is my Repository : https://github.com/priyansh19/personality-detection/blob/master/process_data.py