custom dataset
How solve the problem when I use custom data and present once change the name of the dataset to "custom"? Error message"KeyError: 'custom is not in the dataset registry'" What changes could I make it on configuration file to prevent errors ?
dataset settings
dataset_type = 'CustomDataset' data_root = 'data/custom/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict( type=dataset_type, ann_file=data_root + 'annotations/train.json', img_prefix=data_root + 'train/', pipeline=train_pipeline), val=dict( type=dataset_type, ann_file=data_root + 'annotations/val.json', img_prefix=data_root + 'val/', pipeline=test_pipeline), test=dict( type=dataset_type, ann_file=data_root + 'annotations/val.json', img_prefix=data_root + 'test/', pipeline=test_pipeline)) evaluation = dict(interval=1, metric='bbox')
Please follow the tutorial to prepare your data format.