warp-ctc icon indicating copy to clipboard operation
warp-ctc copied to clipboard

loss not converging

Open BigBorg opened this issue 6 years ago • 4 comments

I'm training a CRNN to do captcha recognition. Without CTC, it reach 90% sequence for certain type of captcha. The problem is it can only recognize captchas with similar character segmentation. So I tried this CTC pytorch binding. But the loss, both training and eval loss, decrease only in the beginning. Then, it reach some plateau without further dropping. My model detail is Resnet pretrained CNN layer + Bidirectional LSTM + Fully Connected layer + CTC. Tried different layers and units of LSTM, different opimizers, curriculum learning. Nothing seems to work. For variable length captcha recognition, I found that the plateau value is dependent on the length of captcha. The longer the captcha, the higher the loss. I'm using 432cf33 commit of ctc pytorch binding since when I was installing, commit abed5eb causes installation failure. I don't know if this matters. No idea what is wrong. If there is any important tricks training CRNN using CTC, please let me know. Here is my model code below. It can not be run since it is just part of a project. But it's enough to give you an overview of my model.

#encoding:utf8
import os
import sys
import torch
import warpctc_pytorch
import traceback

import torchvision
from torch import nn, autograd, FloatTensor, optim
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import MultiStepLR
from tensorboard import SummaryWriter
from pprint import pprint

from net.utils import decoder

from logging import getLogger, StreamHandler
logger = getLogger(__name__)
handler = StreamHandler(sys.stdout)
logger.addHandler(handler)

from dataset_util.utils import id_to_character
from dataset_util.transform import rescale, normalizer
from config.config import MAX_CAPTCHA_LENGTH, TENSORBOARD_LOG_PATH, MODEL_PATH


class CNN_RNN(nn.Module):
    def __init__(self, lstm_bidirectional=True, use_ctc=True, *args, **kwargs):
        super(CNN_RNN, self).__init__(*args, **kwargs)
        model_conv = torchvision.models.resnet18(pretrained=True)
        # for param in model_conv.parameters():
        #     param.requires_grad = False
        #
        modules = list(model_conv.children())[:-1]  # delete the last fc layer.
        # for param in modules[8].parameters():
        #     param.requires_grad = True

        self.resnet = nn.Sequential(*modules)            # CNN with fixed parameters from resnet as feature extractor
        self.lstm_input_size = 512 * 2 * 2
        self.lstm_hidden_state_size = 512
        self.lstm_num_layers = 2
        self.chracter_space_length = 64
        self._lstm_bidirectional = lstm_bidirectional
        self._use_ctc = use_ctc
        if use_ctc:
            # self._max_captcha_length = int(MAX_CAPTCHA_LENGTH * 2)
            self._max_captcha_length = 8
        else:
            self._max_captcha_length = MAX_CAPTCHA_LENGTH

        if lstm_bidirectional:
            self.lstm_hidden_state_size = self.lstm_hidden_state_size * 2           # so that hidden size for one direction in bidirection lstm is the same as vanilla lstm
            self.lstm = self.lstm = nn.LSTM(self.lstm_input_size, self.lstm_hidden_state_size // 2, dropout=0.5, bidirectional=True, num_layers=self.lstm_num_layers)
        else:
            self.lstm = nn.LSTM(self.lstm_input_size, self.lstm_hidden_state_size, dropout=0.5, bidirectional=False, num_layers=self.lstm_num_layers)  # dropout doen't work for one layer lstm

        self.ouput_to_tag = nn.Linear(self.lstm_hidden_state_size, self.chracter_space_length)
        # self.dropout_lstm = nn.Dropout()


    def init_hidden_status(self, batch_size):
        if self._lstm_bidirectional:
            self.hidden = (autograd.Variable(torch.zeros((self.lstm_num_layers * 2, batch_size, self.lstm_hidden_state_size // 2))),
                           autograd.Variable(torch.zeros((self.lstm_num_layers * 2, batch_size, self.lstm_hidden_state_size // 2)))) # number of layers, batch size, hidden dimention
        else:
            self.hidden = (autograd.Variable(torch.zeros((self.lstm_num_layers, batch_size, self.lstm_hidden_state_size))),
                           autograd.Variable(torch.zeros((self.lstm_num_layers, batch_size, self.lstm_hidden_state_size)))) # number of layers, batch size, hidden dimention


    def forward(self, image):
        '''
        :param image:  # batch_size, CHANNEL, HEIGHT, WIDTH
        :return:
        '''
        features = self.resnet(image)                 # [batch_size, 512, 2, 2]
        batch_size = image.shape[0]
        features = [features.view(batch_size, -1) for i in range(self._max_captcha_length)]
        features = torch.stack(features)
        self.init_hidden_status(batch_size)
        output, hidden = self.lstm(features, self.hidden)
        # output = self.dropout_lstm(output)
        tag_space = self.ouput_to_tag(output.view(-1, output.size(2)))      # [MAX_CAPTCHA_LENGTH * BATCH_SIZE, CHARACTER_SPACE_LENGTH]
        tag_space = tag_space.view(self._max_captcha_length, batch_size, -1)

        if not self._use_ctc:
            tag_score = F.log_softmax(tag_space, dim=2)             # [MAX_CAPTCHA_LENGTH, BATCH_SIZE, CHARACTER_SPACE_LENGTH]
        else:
            tag_score = tag_space

        return tag_score


    def save_model(self, model_path):
        torch.save(self, model_path)


    @classmethod
    def load_model(cls, model_path=MODEL_PATH, *args, **kwargs):
        if os.path.exists(model_path):
            model = torch.load(model_path)
            net = model
        else:
            net = cls(*args, **kwargs)

        return net



class Trainer(object):
    def __init__(self, model, use_ctc=True):
        self.model = model
        self._use_ctc = use_ctc
        self.tensorboard_writer = SummaryWriter(TENSORBOARD_LOG_PATH)


    def __del__(self):
        if self.tensorboard_writer:
            self.tensorboard_writer.close()


    def train_net(self, data_loader, eval_data_loader=None, learning_rate=0.008, epoch_num=400):
        try:
            if self._use_ctc:
                loss_function = warpctc_pytorch.warp_ctc.CTCLoss()
            else:
                loss_function = nn.NLLLoss()

            # optimizer = optim.SGD(filter(lambda p: p.requires_grad, self.model.parameters()), momentum=0.2, lr=learning_rate)
            # optimizer = optim.RMSprop(filter(lambda p: p.requires_grad, self.model.parameters()), lr=learning_rate)
            # optimizer = MultiStepLR(optimizer, milestones=[10,15], gamma=0.5)
            optimizer = optim.Adagrad(filter(lambda p: p.requires_grad, self.model.parameters()))

            # optimizer = optim.Adadelta(filter(lambda p: p.requires_grad, self.parameters()))
            # optimizer = optim.Adam(filter(lambda p: p.requires_grad, self.model.parameters()))
            self.tensorboard_writer.add_scalar("learning_rate", learning_rate)

            tensorbard_global_step=0
            if os.path.exists(os.path.join(TENSORBOARD_LOG_PATH, "resume_step")):
                with open(os.path.join(TENSORBOARD_LOG_PATH, "resume_step"), "r") as file_handler:
                    tensorbard_global_step = int(file_handler.read()) + 1

            for epoch_index, epoch in enumerate(range(epoch_num)):
                for index, sample in enumerate(data_loader):
                    optimizer.zero_grad()
                    input_image = autograd.Variable(sample["image"])        # batch_size, 3, 255, 255
                    tag_score = self.model.forward(input_image)

                    if self._use_ctc:
                        tag_score, target, tag_score_sizes, target_sizes = self._loss_preprocess_ctc(tag_score, sample)
                        loss = loss_function(tag_score, target, tag_score_sizes, target_sizes)
                        loss = loss / tag_score.size(1) / self.model._max_captcha_length

                    else:
                        target = sample["padded_label_idx"]
                        tag_score, target = self._loss_preprocess(tag_score, target)
                        loss = loss_function(tag_score, target)

                    print("Training loss: {}".format(float(loss)))
                    self.tensorboard_writer.add_scalar("training_loss", float(loss), tensorbard_global_step)
                    loss.backward()

                    # torch.nn.utils.clip_grad_norm(self.model.lstm.parameters(), 0.5)
                    # for param_index, parameter in enumerate(self.model.lstm.parameters()):
                    #     parameter_sqrt_square_mean = torch.mean(torch.sqrt(torch.mul(parameter, parameter)))
                    #     self.tensorboard_writer.add_scalar("lstm_grad_mean_{}".format(param_index), float(parameter_sqrt_square_mean), tensorbard_global_step)

                    optimizer.step()

                    if index % 250 == 0:
                        print(u"Processing batch: {} of {}, epoch: {}".format(index, len(data_loader), epoch_index))
                        self.evaluate(eval_data_loader, loss_function, tensorbard_global_step)

                    tensorbard_global_step += 1

                self.model.save_model(MODEL_PATH + "_epoch_{}".format(epoch_index))

        except KeyboardInterrupt:
            print("Exit for KeyboardInterrupt, save model")
            self.model.save_model(MODEL_PATH)

            with open(os.path.join(TENSORBOARD_LOG_PATH, "resume_step"), "w") as file_handler:
                file_handler.write(str(tensorbard_global_step))

        except Exception as excp:
            logger.error(str(excp))
            logger.error(traceback.format_exc())


    def predict(self, image):
        # TODO ctc version
        '''
        :param image: [batch_size, channel, height, width]
        :return:
        '''
        tag_score = self.model.forward(image)
        # TODO ctc
        # if self._use_ctc:
        #     tag_score = F.softmax(tag_score, dim=-1)
        #     decoder.decode(tag_score)

        confidence_log_probability, indexes = tag_score.max(2)

        predicted_labels = []
        for batch_index in range(indexes.size(1)):
            label = ""
            for character_index in range(self.model._max_captcha_length):
                if int(indexes[character_index, batch_index]) != 1:
                    label += id_to_character[int(indexes[character_index, batch_index])]
            predicted_labels.append(label)

        return predicted_labels, tag_score


    def predict_pil_image(self, pil_image):
        try:
            self.model.eval()
            processed_image = normalizer(rescale({"image": pil_image}))["image"].view(1, 3, 255, 255)
            result, tag_score = self.predict(processed_image)
            self.model.train()

        except Exception as excp:
            logger.error(str(excp))
            logger.error(traceback.format_exc())
            return [""], None

        return result, tag_score


    def evaluate(self, eval_dataloader, loss_function, step=0):
        total = 0
        sequence_correct = 0
        character_correct = 0
        character_total = 0
        loss_total = 0
        batch_size = eval_data_loader.batch_size
        true_predicted = {}
        self.model.eval()
        for sample in eval_dataloader:
            total += batch_size
            input_images = sample["image"]
            predicted_labels, tag_score = self.predict(input_images)

            for predicted, true_label in zip(predicted_labels, sample["label"]):
                if predicted == true_label:                  # dataloader is making label a list, use batch_size=1
                    sequence_correct += 1

                for index, true_character in enumerate(true_label):
                    character_total += 1
                    if index < len(predicted) and predicted[index] == true_character:
                        character_correct += 1

                true_predicted[true_label] = predicted

            if self._use_ctc:
                tag_score, target, tag_score_sizes, target_sizes = self._loss_preprocess_ctc(tag_score, sample)
                loss_total += float(loss_function(tag_score, target, tag_score_sizes, target_sizes) / batch_size / self.model._max_captcha_length)

            else:
                tag_score, target = self._loss_preprocess(tag_score, sample["padded_label_idx"])
                loss_total += float(loss_function(tag_score, target))  # averaged over batch index

        print("True captcha to predicted captcha: ")
        pprint(true_predicted)
        self.tensorboard_writer.add_text("eval_ture_to_predicted", str(true_predicted), global_step=step)

        accuracy = float(sequence_correct) / total
        avg_loss = float(loss_total) / (total / batch_size)
        character_accuracy = float(character_correct) / character_total
        self.tensorboard_writer.add_scalar("eval_sequence_accuracy", accuracy, global_step=step)
        self.tensorboard_writer.add_scalar("eval_character_accuracy", character_accuracy, global_step=step)
        self.tensorboard_writer.add_scalar("eval_loss", avg_loss, global_step=step)
        self.model.train()


    def _loss_preprocess(self, tag_score, target):
        '''
        :param tag_score:  value return by self.forward
        :param target:     sample["padded_label_idx"]
        :return:           (processed_tag_score, processed_target)  ready for NLLoss function
        '''
        target = target.transpose(0, 1)
        target = target.contiguous()
        target = target.view(target.size(0) * target.size(1))
        tag_score = tag_score.view(-1, self.model.chracter_space_length)

        return tag_score, target


    def _loss_preprocess_ctc(self, tag_score, sample):
        target_2d = [
            [int(ele) for ele in sample["padded_label_idx"][row, :] if int(ele) != 0 and int(ele) != 1]
            for row in range(sample["padded_label_idx"].size(0))]
        target = []
        for ele in target_2d:
            target.extend(ele)
        target = autograd.Variable(torch.IntTensor(target))

        # tag_score = F.softmax(F.sigmoid(tag_score), dim=-1)
        tag_score_sizes = autograd.Variable(torch.IntTensor([self.model._max_captcha_length] * tag_score.size(1)))
        target_sizes = autograd.Variable(sample["captcha_length"].int())

        return tag_score, target, tag_score_sizes, target_sizes


if __name__ == "__main__":
    from dataset_util.dataset import dataset, eval_dataset
    data_loader = DataLoader(dataset, batch_size=3, shuffle=True)
    eval_data_loader = DataLoader(eval_dataset, batch_size=3, shuffle=True)

    net = CNN_RNN.load_model(model_path=MODEL_PATH, lstm_bidirectional=True, use_ctc=True)
    trainer = Trainer(model=net, use_ctc=True)

    trainer.train_net(data_loader, eval_data_loader=eval_data_loader)
    # net.predict(dataset[0]["image"].view(1, 3, 255, 255))

    # predict_pil_image test code
    # from config.config import IMAGE_PATHS
    # import glob
    # from PIL import Image
    #
    # image_paths = glob.glob(os.path.join(IMAGE_PATHS.get("EVAL"), "*.png"))
    # for image_path in image_paths:
    #     pil_image = Image.open(image_path)
    #     predicted, score = net.predict_pil_image(pil_image)
    #     print("True value: {}, predicted: {}".format(os.path.split(image_path)[1], predicted))

    print("Done")

BigBorg avatar Apr 02 '18 06:04 BigBorg

Should anyone encounter anything similar to the above - a plateauing loss value - it's worth checking the index of your blank symbol. The default is CTCLoss(blank=0, ...).

samgd avatar Aug 23 '18 12:08 samgd

Same problem.

ZhengkaiZ avatar Oct 27 '18 02:10 ZhengkaiZ

hey how did you get over the problem ?

vaibhav0195 avatar Jan 31 '19 11:01 vaibhav0195

I am facing the same problem when training CRNN for urdu textlines. I trained previously on ligatures and it worked, but then I moved to train it on words and textlines it didnt converge.

HassamChundrigar avatar Feb 06 '19 11:02 HassamChundrigar