SciMLBenchmarks.jl icon indicating copy to clipboard operation
SciMLBenchmarks.jl copied to clipboard

Convert reaction diffusion problem into a benchmark

Open ChrisRackauckas opened this issue 4 years ago • 1 comments

using OrdinaryDiffEq, RecursiveArrayTools, LinearAlgebra, Test, SparseArrays, SparseDiffTools, Sundials

# Define the constants for the PDE
const α₂ = 1.0
const α₃ = 1.0
const β₁ = 1.0
const β₂ = 1.0
const β₃ = 1.0
const r₁ = 1.0
const r₂ = 1.0
const D = 100.0
const γ₁ = 0.1
const γ₂ = 0.1
const γ₃ = 0.1
const N = 256
const X = reshape([i for i in 1:N for j in 1:N],N,N)
const Y = reshape([j for i in 1:N for j in 1:N],N,N)
const α₁ = 1.0.*(X.>=4*N/5)

const Mx = Tridiagonal([1.0 for i in 1:N-1],[-2.0 for i in 1:N],[1.0 for i in 1:N-1])
const My = copy(Mx)
Mx[2,1] = 2.0
Mx[end-1,end] = 2.0
My[1,2] = 2.0
My[end,end-1] = 2.0

# Define the initial condition as normal arrays
u0 = zeros(N,N,3)

const MyA = zeros(N,N);
const AMx = zeros(N,N);
const DA = zeros(N,N);
# Define the discretized PDE as an ODE function
function f(du,u,p,t)
   A = @view  u[:,:,1]
   B = @view  u[:,:,2]
   C = @view  u[:,:,3]
  dA = @view du[:,:,1]
  dB = @view du[:,:,2]
  dC = @view du[:,:,3]
  mul!(MyA,My,A)
  mul!(AMx,A,Mx)
  @. DA = D*(MyA + AMx)
  @. dA = DA + α₁ - β₁*A - r₁*A*B + r₂*C
  @. dB = α₂ - β₂*B - r₁*A*B + r₂*C
  @. dC = α₃ - β₃*C + r₁*A*B - r₂*C
end

Iy = SparseMatrixCSC(I,N,N)
Ix = SparseMatrixCSC(I,N,N)
fJ = ones(3,3)
Dz = [1 0 0
      0 0 0
      0 0 0]
jacsparsity = kron(Dz,Iy,sparse(Mx)) + kron(Dz,sparse(My),Ix) + kron(fJ,Iy,Ix)
@time colorvec = matrix_colors(jacsparsity)

# Solve the ODE
ff = ODEFunction(f,colorvec=colorvec,jac_prototype=jacsparsity)
prob = ODEProblem(ff,u0,(0.0,100.0))
sol = solve(prob,BS3(),progress=true,save_everystep=false,save_start=false)
sol = solve(prob,ROCK2(),progress=true,save_everystep=false,save_start=false)
sol = solve(prob,TRBDF2(autodiff=false),progress=true,save_everystep=false,save_start=false)
@time sol = solve(prob,CVODE_BDF(linear_solver=:GMRES),progress=true,save_everystep=false)

println("CPU Times")
println("BS3")
@time sol = solve(prob,BS3(),progress=true,save_everystep=false)
println("ROCK2")
@time sol = solve(prob,ROCK2(),progress=true,save_everystep=false)
println("ROCK4")
@time sol = solve(prob,ROCK4(),progress=true,save_everystep=false)
println("TRBDF2")
@time sol = solve(prob,TRBDF2(autodiff=false),progress=true,save_everystep=false)
println("Rodas5")
@time sol = solve(prob,Rodas5(autodiff=false),progress=true,save_everystep=false)
println("CVODE_BDF")
@time sol = solve(prob,CVODE_BDF(linear_solver=:GMRES),progress=true,save_everystep=false)

using CuArrays
gu0 = CuArray(Float32.(u0))
const gMx = CuArray(Float32.(Mx))
const gMy = CuArray(Float32.(My))
const gα₁ = CuArray(Float32.(α₁))
const gMyA = CuArray(zeros(Float32,N,N))
const gAMx = CuArray(zeros(Float32,N,N))
const gDA = CuArray(zeros(Float32,N,N))

function gf(du,u,p,t)
   A = @view  u[:,:,1]
   B = @view  u[:,:,2]
   C = @view  u[:,:,3]
  dA = @view du[:,:,1]
  dB = @view du[:,:,2]
  dC = @view du[:,:,3]
  mul!(gMyA,gMy,A)
  mul!(gAMx,A,gMx)
  @. gDA = D*(gMyA + gAMx)
  @. dA = gDA + gα₁ - β₁*A - r₁*A*B + r₂*C
  @. dB = α₂ - β₂*B - r₁*A*B + r₂*C
  @. dC = α₃ - β₃*C + r₁*A*B - r₂*C
end

prob2 = ODEProblem(gf,gu0,(0.0,100.0))
CuArrays.allowscalar(false)
sol = solve(prob2,BS3(),save_everystep=false,save_start=false)
sol = solve(prob2,ROCK2(),save_everystep=false,save_start=false)
@test sol.t[end] == 100.0

println("GPU Times")
println("BS3")
@time sol = solve(prob2,BS3(),progress=true,save_everystep=false,save_start=false)
println("ROCK2")
@time sol = solve(prob2,ROCK2(),progress=true,save_everystep=false,save_start=false)

ChrisRackauckas avatar Feb 04 '20 07:02 ChrisRackauckas

And document the generation of the sparsity pattern:

using OrdinaryDiffEq, RecursiveArrayTools, LinearAlgebra, Test

# Define the constants for the PDE
const α₂ = 1.0
const α₃ = 1.0
const β₁ = 1.0
const β₂ = 1.0
const β₃ = 1.0
const r₁ = 1.0
const r₂ = 1.0
const D = 100.0
const γ₁ = 0.1
const γ₂ = 0.1
const γ₃ = 0.1
const N = 32
const X = reshape([i for i in 1:N for j in 1:N],N,N)
const Y = reshape([j for i in 1:N for j in 1:N],N,N)
const α₁ = 1.0.*(X.>=4*N/5)

const Mx = Tridiagonal([1.0 for i in 1:N-1],[-2.0 for i in 1:N],[1.0 for i in 1:N-1])
const My = copy(Mx)
Mx[2,1] = 2.0
Mx[end-1,end] = 2.0
My[1,2] = 2.0
My[end,end-1] = 2.0

# Define the discretized PDE as an ODE function
function f(du,u,p,t)
   A = @view  u[:,:,1]
   B = @view  u[:,:,2]
   C = @view  u[:,:,3]
  dA = @view du[:,:,1]
  dB = @view du[:,:,2]
  dC = @view du[:,:,3]
  mul!(MyA,My,A)
  mul!(AMx,A,Mx)
  @. DA = D*(MyA + AMx)
  @. dA = DA + α₁ - β₁*A - r₁*A*B + r₂*C
  @. dB = α₂ - β₂*B - r₁*A*B + r₂*C
  @. dC = α₃ - β₃*C + r₁*A*B - r₂*C
end

using ModelingToolkit

# Define the initial condition as normal arrays
@variables du[1:N,1:N,1:3] u[1:N,1:N,1:3] MyA[1:N,1:N] AMx[1:N,1:N] DA[1:N,1:N]


f(du,u,nothing,0.0)
J = ModelingToolkit.jacobian(vec(du),vec(u),simplify=false)

using SparseArrays
sJ = sparse(J)

Iy = SparseMatrixCSC(I,N,N)
Ix = SparseMatrixCSC(I,N,N)
fJ = ones(3,3)
Dz = [1 0 0
      0 0 0
      0 0 0]
A = kron(Dz,Iy,sparse(Mx)) + kron(Dz,sparse(My),Ix) + kron(fJ,Iy,Ix)

all(iszero.(sJ) .== iszero.(A))

ChrisRackauckas avatar Feb 04 '20 07:02 ChrisRackauckas