Image-Classification
Image-Classification copied to clipboard
Pre-trained VGG-Net Model for image classification using tensorflow
Image Classification
Pre-trained VGG-Net Model for image classification using tensorflow
DataSets :
we used each of this DataSets for Image Classification training
After Training :
Resultat of UC Merced Land DataSet After Image Classification Training
Testing the classification of one batch of Pictures from UC Merced Land Use Dataset
Cost
and Accuracy
:
graph represent the values of both of cost
and accuracy
each epoch
How To use :
you can use this model to classify any DataSet just follow the 4 next instruction
Instalation :
- install tensorflow 1.6 matplotlib opencv imutils
pip install tensorflow matplotlib opencv-python imutils
- to install tensorflow gpu matplotlib opencv
Train the Model:
To Train Model for different DataSets or Different Classification follow the steps :
Exploit your DataSet
python dataSetGenerator.py [-h] --path path [--SaveTo SaveTo] [--resize resize]
[--resize_to resize_to] [--percentage percentage]
[--dataAug dataAugmentation]
Example
python dataSetGenerator.py --path Desktop/SIRI-WHU --resize --resize_to 200
Help
image dataSet as numpy file.
picture dataSets
|
|----------class-1
| . |-------image-1
| . | .
| . | .
| . | .
| . |-------image-n
| .
|-------class-n
optional arguments:
-h, --help show this help message and exit
--path path the path for picture dataSets folder (/)
--SaveTo SaveTo the path when we save dataSet (/)
--resize resize choose resize the pictures or not
--resize_to resize_to
the new size of pictures
--percentage percentage
how many pictures you want to use for training
--dataAug dataAugmentation
apply data Augmentation Strategy
Train your DataSet
python train_vgg19.py [-h] --dataset dataset [--batch batch] [--epochs epochs]
Example
python train_vgg19.py --dataset SIRI-WHU
Help
Train vgg19 [-h] --dataset dataset [--batch batch] [--epochs epochs]
Simple tester for the vgg19_trainable
optional arguments:
-h, --help show this help message and exit
--dataset dataset DataSet Name
--batch batch batch size
--epochs epochs number of epoch to train the network
Test your Model :
to test your model
python test_vgg19.py [-h] --dataset dataset [--batch batch]
Example
python test_vgg19.py --dataset SIRI-WHU
Help
tester for the vgg19_trainable
optional arguments:
-h, --help show this help message and exit
--dataset dataset DataSet Name
--batch batch batch size
Confusion Matrix :
to Draw Confusion matrix (the output in images)
python confusion_matrix.py -h [-h] --dataset dataset [--batch batch] [--showPic showPic]
Help
Draw Confusion Matrix for the vgg19
optional arguments:
-h, --help show this help message and exit
--dataset dataset DataSet Name
--batch batch batch size
--showPic showPic Show patch of picture each epoch
For Distributed Tensorflow [optional] :
pip install python-nmap
- Set Workers and pss (parameter servers) devices name in train_vgg19_distibuted
workers = ['PC1','PC2']
pss = ['PC3']