ONNX_custom_layer
ONNX_custom_layer copied to clipboard
How to add convolution in symbolic function?
Hello! I see you have experience in symbolic functions. Can you help me? I'm tryig to make onnx realization of simple pytorch block. I made custom block with custom forward function.
class MyConvBlockFunction(Function):
@staticmethod
def symbolic(g, input, conv1):
from torch.onnx.symbolic_opset9 import _shape_as_tensor, _convolution, relu
conv = _convolution(g, input, conv1.weight, False, 1, 1, 1, False, (), 1, None, None, None)
output = relu(g, conv)
return output
@staticmethod
def forward(self, input, conv1):
conv = conv1(input)
relu1 = nn.ReLU()
res = relu1(conv)
return res
class MyConvBlock(nn.Module):
def __init__(self):
super(MyConvBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels = 3, out_channels = 2, kernel_size=3, stride=1, padding=1, bias=False)
self.relu = nn.ReLU()
#self.weight = torch.tensor(self.conv1.weight, requires_grad=False)
def forward(self, input):
return MyConvBlockFunction.apply(input, self.conv1)
But when I run export to onnx, I get an error that weight tensor is wrong tensor.
weight_size = weight.type().sizes()
AttributeError: 'str' object has no attribute 'sizes'
I found that my input tensor is a good onnx tensor, and 'conv.weight' is pytorch tensor, not onnx tensor.
input.1 defined in (%input.1 : Float(1, 3, 4, 4), %conv1.weight : Float(2, 3, 3, 3) = prim::Param()
2 defined in (%2 : Tensor = onnx::Constant[value=<Tensor>](), scope: MyConvBlock)
How can I send weights to onnx _convolution operation?
Thank you for your help!
I am facing similar issues, have you solved this?
I am facing similar issues, have you solved this?
Unfortunately, no. I didn't find any information how to solve my problem.