LemonML
LemonML copied to clipboard
πMachine Learning library from scratch.π
πLemonπ
Basic Machine Learning / Deep Learning Library
Implemented with numpy and scipy in python codes.
Also includes a simple version of autogradable Tensor.
For more information, please refer to my blog.
Requirements
- python==3.6
- numpy==1.17.0
- scipy==1.2.1
- torch==1.3.0
Structure
.
βββ LICENSE
βββ README.md
βββ graph
βΒ Β βββ __init__.py
βΒ Β βββ _conditional_random_field.py
βΒ Β βββ _hidden_markov.py
βββ nn
βΒ Β βββ __init__.py
βΒ Β βββ _activation.py
βΒ Β βββ _base.py
βΒ Β βββ _criterion.py
βΒ Β βββ _fully_connect.py
βΒ Β βββ autograd
βΒ Β βββ __init__.py
βΒ Β βββ tensor.py
βββ supervised
βΒ Β βββ __init__.py
βΒ Β βββ _base.py
βΒ Β βββ bayes
βΒ Β βΒ Β βββ __init__.py
βΒ Β βΒ Β βββ _bayes.py
βΒ Β βββ knn
βΒ Β βΒ Β βββ __init__.py
βΒ Β βΒ Β βββ _k_nearest.py
βΒ Β βββ linear
βΒ Β βΒ Β βββ __init__.py
βΒ Β βΒ Β βββ _base.py
βΒ Β βΒ Β βββ _linear_regression.py
βΒ Β βΒ Β βββ _logistic_regression.py
βΒ Β βΒ Β βββ _multi_classifier.py
βΒ Β βΒ Β βββ _perceptron.py
βΒ Β βΒ Β βββ _regularization.py
βΒ Β βΒ Β βββ _support_vector_machine.py
βΒ Β βββ tree
βΒ Β βββ __init__.py
βΒ Β βββ _cart.py
βΒ Β βββ _id3.py
βΒ Β βββ ensemble
βΒ Β βββ __init__.py
βΒ Β βββ _adaptive_boosting.py
βΒ Β βββ _random_forest.py
βββ test
βΒ Β βββ nn_models
βΒ Β βΒ Β βββ fcnn.py
βΒ Β βββ test_graph.py
βΒ Β βββ test_supervised.py
βββ unsupervised
βΒ Β βββ __init__.py
βΒ Β βββ clustering
βΒ Β βΒ Β βββ __init__.py
βΒ Β βΒ Β βββ _base.py
βΒ Β βΒ Β βββ _kmeans.py
βΒ Β βΒ Β βββ _spectral.py
βΒ Β βββ decomposition
βΒ Β βββ __init__.py
βΒ Β βββ _base.py
βΒ Β βββ _pca.py
βββ utils
βββ __init__.py
βββ _batch.py
βββ _cross_validate.py
βββ _make_data.py
βββ _scaling.py
Timeline
- 2019.6.12
- [x] Linear Regression
- [x] Logistic Regression
- [x] Perceptron
- [x] utils.scaling / batch / cross_validate
- 6.13
- [x] Support Vector Machine
- [x] K-Nearest-Neighbor
- [x] test script
- 6.15
- [x] Bayes
- 6.16
- [x] K-Means
- 6.19
- [x] Spectral
- [x] Principle Component Analysis
- 6.24
- [x] Decision Tree(ID3)
- 7.2
- [x] Multi-classifier
- [x] Regularization
- 7.13
- [x] Activation
- [x] Criterion
- [x] Fully Connected Layer
- [x] Fully Connected Neural Network Model
- 8.17-8.20
- [x] Improve project structure
- [x] Decision Tree(CART)
- [x] Random Forest
- [x] Adaboost
- 8.23
- [x] Hidden Markov Model
- 11.6
- [x] Conditional Random Field Model(Based on
Torch) - [x] Autograd Tensor
- [x] Conditional Random Field Model(Based on