rasa-demo
rasa-demo copied to clipboard
rasa demo - train issue
rasa-version: 1.10.4 python-version: Python 3.6.9 os: ubuntu 18.04
I'm following this tutorial https://blog.rasa.com/how-to-build-a-voice-assistant-with-open-source-rasa-and-mozilla-tools/
when i try 2.3 step : rasa train --augmentation 0
i get the following error.
Training Core model...
Processed Story Blocks: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████| 525/525 [00:00<00:00, 728.31it/s, # trackers=1]
Processed Story Blocks: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████| 525/525 [00:28<00:00, 23.99it/s, # trackers=46]
Processed Story Blocks: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████| 525/525 [00:36<00:00, 14.37it/s, # trackers=50]
Processed Story Blocks: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████| 525/525 [00:35<00:00, 14.76it/s, # trackers=48]
Processed trackers: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 939/939 [00:02<00:00, 393.22it/s, # actions=7549]
2020-07-02 11:44:21.885817: E tensorflow/stream_executor/cuda/cuda_driver.cc:351] failed call to cuInit: UNKNOWN ERROR (303)
Epochs: 0%| | 0/20 [00:00<?, ?it/s]/home/sreenijak/python-envs/rasaenv/lib/python3.6/site-packages/rasa/utils/tensorflow/model_data.py:386: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray
final_data[k].append(np.concatenate(np.array(v)))
Epochs: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████| 20/20 [04:04<00:00, 9.97s/it, t_loss=0.485, loss=0.129, acc=0.999]
2020-07-02 11:48:42 INFO rasa.utils.tensorflow.models - Finished training.
Processed trackers: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 439/439 [00:00<00:00, 786.88it/s, # actions=1639]
Processed actions: 1639it [00:00, 6310.55it/s, # examples=1639]
Processed trackers: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 439/439 [00:00<00:00, 969.91it/s, # actions=939]
2020-07-02 11:48:47 INFO rasa.core.agent - Persisted model to '/tmp/tmpercnpaoi/core'
Core model training completed.
Training NLU model...
2020-07-02 11:48:47 INFO absl - Using /tmp/tfhub_modules to cache modules.
2020-07-02 11:48:47 INFO absl - Downloading TF-Hub Module 'http://models.poly-ai.com/convert/v1/model.tar.gz'.
2020-07-02 11:48:50 INFO absl - Downloaded http://models.poly-ai.com/convert/v1/model.tar.gz, Total size: 152.02MB
2020-07-02 11:48:50 INFO absl - Downloaded TF-Hub Module 'http://models.poly-ai.com/convert/v1/model.tar.gz'.
/home/sreenijak/python-envs/rasaenv/lib/python3.6/site-packages/rasa/utils/common.py:363: UserWarning: Please configure the number of 'epochs' in your configuration file. We will change the default value of 'epochs' in the future to 1.
2020-07-02 11:49:10 INFO rasa.nlu.training_data.training_data - Training data stats:
2020-07-02 11:49:10 INFO rasa.nlu.training_data.training_data - Number of intent examples: 5277 (31 distinct intents)
2020-07-02 11:49:10 INFO rasa.nlu.training_data.training_data - Found intents: 'switch', 'ask_which_events', 'explain', 'bye', 'thank', 'contact_sales', 'ask_how_contribute', 'greet', 'ask_question_in_forum', 'install_rasa', 'deny', 'nlu_info', 'technical_question', 'next_step', 'nlu_generation_tool_recommendation', 'chitchat', 'react_positive', 'affirm', 'react_negative', 'why_rasa', 'ask_why_contribute', 'out_of_scope', 'restart', 'pipeline_recommendation', 'signup_newsletter', 'human_handoff', 'canthelp', 'source_code', 'faq', 'enter_data', 'how_to_get_started'
2020-07-02 11:49:10 INFO rasa.nlu.training_data.training_data - Number of response examples: 2357 (37 distinct responses)
2020-07-02 11:49:10 INFO rasa.nlu.training_data.training_data - Number of entity examples: 956 (10 distinct entities)
2020-07-02 11:49:10 INFO rasa.nlu.training_data.training_data - Found entity types: 'product', 'nlu_part', 'job_function', 'location', 'language', 'company', 'current_api', 'entity', 'name', 'user_type'
2020-07-02 11:49:10 INFO rasa.nlu.model - Starting to train component ConveRTTokenizer
2020-07-02 11:49:56 INFO rasa.nlu.model - Finished training component.
2020-07-02 11:49:56 INFO rasa.nlu.model - Starting to train component ConveRTFeaturizer
Text batches: 0%| | 0/83 [00:00<?, ?it/s]/home/sreenijak/python-envs/rasaenv/lib/python3.6/site-packages/rasa/nlu/featurizers/dense_featurizer/convert_featurizer.py:129: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray
return np.array(final_embeddings)
Text batches: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 83/83 [00:59<00:00, 1.21it/s]
Response batches: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 37/37 [01:11<00:00, 1.13it/s]
2020-07-02 11:52:07 INFO rasa.nlu.model - Finished training component.
2020-07-02 11:52:07 INFO rasa.nlu.model - Starting to train component RegexFeaturizer
2020-07-02 11:52:09 INFO rasa.nlu.model - Finished training component.
2020-07-02 11:52:09 INFO rasa.nlu.model - Starting to train component LexicalSyntacticFeaturizer
2020-07-02 11:52:11 INFO rasa.nlu.model - Finished training component.
2020-07-02 11:52:11 INFO rasa.nlu.model - Starting to train component CountVectorsFeaturizer
/home/sreenijak/python-envs/rasaenv/lib/python3.6/site-packages/rasa/utils/common.py:363: UserWarning: The out of vocabulary token 'oov' was configured, but could not be found in any one of the NLU training examples. All unseen words will be ignored during prediction.
More info at https://rasa.com/docs/rasa/nlu/components/#countvectorsfeaturizer
/home/sreenijak/python-envs/rasaenv/lib/python3.6/site-packages/rasa/utils/common.py:363: UserWarning: The out of vocabulary token 'oov' was configured, but could not be found in any one of the ResponseSelector training examples. All unseen words will be ignored during prediction.
More info at https://rasa.com/docs/rasa/nlu/components/#countvectorsfeaturizer
2020-07-02 11:52:17 INFO rasa.nlu.model - Finished training component.
2020-07-02 11:52:17 INFO rasa.nlu.model - Starting to train component CountVectorsFeaturizer
2020-07-02 11:52:25 INFO rasa.nlu.model - Finished training component.
2020-07-02 11:52:25 INFO rasa.nlu.model - Starting to train component DIETClassifier
/home/sreenijak/python-envs/rasaenv/lib/python3.6/site-packages/rasa/nlu/classifiers/diet_classifier.py:589: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray
X_dense = np.array(X_dense)
Traceback (most recent call last):
File "/home/sreenijak/python-envs/rasaenv/bin/rasa", line 8, in
Thanks for the issue, @rctatman will get back to you about it soon!
You may find help in the docs and the forum, too 🤗
Hi,
I'm getting same issue on macos with python 3.7.
File "/Users/endi/Projects/Endi/Rasa/rasa-demo/venv3/lib/python3.7/site-packages/rasa/utils/tensorflow/model_data.py", line 107, in number_of_examples f"Number of examples differs for keys '{data.keys()}'. Number of " ValueError: Number of examples differs for keys 'dict_keys(['text_features'])'. Number of examples should be the same for all data.
Try
pip install rasa==1.9.7 rasa train
It works for me.
The error is raised from def _create_model_data at diet_classifier.py
1.10.0
for example in training_data:
1.9.7
for e in training_data:
if label_attribute is None or e.get(label_attribute):