nanodet icon indicating copy to clipboard operation
nanodet copied to clipboard

I trained nanodet-plus-m-1.5x_416 on my own data set, and the verification during the training was normal, but the test after the training output information I did not understand, is this normal?

Open tty0013 opened this issue 2 years ago β€’ 0 comments

The environment is a cloud GPU server without a graphical interface 1.Why is the output of hyperparams empty? 2.Why does the dataloader output 0 test results?

(nanodet) root@container-085311853c-778288ec:~/autodl-tmp/nanodet# python tools/test.py --task val --config config/nanodet_custom_xml_dataset.yml --model workspace/custom_nanodet-plus-m-1.5x_416/model_best/model_best.ckpt 
[NanoDet][05-08 11:51:24]INFO:Setting up data...
datasets/AAAS/voc/val/Annotations
creating index...
index created!
[NanoDet][05-08 11:51:24]INFO:Creating model...
INFO:NanoDet:Creating model...
model size is  1.5x
init weights...
Finish initialize NanoDet-Plus Head.
GPU available: True, used: True
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
[NanoDet][05-08 11:51:28]INFO:Starting testing...
INFO:NanoDet:Starting testing...
initializing ddp: GLOBAL_RANK: 0, MEMBER: 1/1
----------------------------------------------------------------------------------------------------
distributed_backend=nccl
All DDP processes registered. Starting ddp with 1 processes
----------------------------------------------------------------------------------------------------

LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
[NanoDet][05-08 11:51:29]INFO:hyperparams: 
INFO:NanoDet:hyperparams: 
Testing: 0it [00:00, ?it/s][NanoDet][05-08 11:51:29]INFO:Loaded average state from checkpoint.
INFO:NanoDet:Loaded average state from checkpoint.
/root/miniconda3/envs/nanodet/lib/python3.8/site-packages/torch/nn/functional.py:3060: UserWarning: Default upsampling behavior when mode=bilinear is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details.
  warnings.warn("Default upsampling behavior when mode={} is changed "
Testing:  95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š      | 36/38 [00:07<00:00, 16.93it/s]Loading and preparing results...
DONE (t=0.53s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
Testing: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 38/38 [00:20<00:00, 16.93it/s]DONE (t=11.96s).
Accumulating evaluation results...
DONE (t=0.73s).
[NanoDet][05-08 11:51:54]INFO:
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.454
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.785
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.431
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.161
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.481
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.287
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.495
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.598
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.278
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.628

INFO:NanoDet:
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.454
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.785
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.431
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.161
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.481
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.287
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.495
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.598
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.278
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.628

[NanoDet][05-08 11:51:54]INFO:
| class   | AP50   | mAP   | class   | AP50   | mAP   |
|:--------|:-------|:------|:--------|:-------|:------|
| 20124   | 82.2   | 39.8  | 20125   | 65.1   | 28.7  |
| 20133   | 77.6   | 43.2  | 20144   | 79.8   | 54.4  |
| 20207   | 73.1   | 53.0  | 20208   | 73.0   | 43.5  |
| 20209   | 62.1   | 30.2  | 20210   | 82.9   | 44.5  |
| 20232   | 84.8   | 40.5  | 20240   | 66.4   | 27.3  |
| 20257   | 75.9   | 33.4  | 20261   | 76.6   | 33.9  |
| 20325   | 88.0   | 53.8  | 20326   | 94.6   | 71.1  |
| 30070   | 95.3   | 84.3  |         |        |       |
INFO:NanoDet:
| class   | AP50   | mAP   | class   | AP50   | mAP   |
|:--------|:-------|:------|:--------|:-------|:------|
| 20124   | 82.2   | 39.8  | 20125   | 65.1   | 28.7  |
| 20133   | 77.6   | 43.2  | 20144   | 79.8   | 54.4  |
| 20207   | 73.1   | 53.0  | 20208   | 73.0   | 43.5  |
| 20209   | 62.1   | 30.2  | 20210   | 82.9   | 44.5  |
| 20232   | 84.8   | 40.5  | 20240   | 66.4   | 27.3  |
| 20257   | 75.9   | 33.4  | 20261   | 76.6   | 33.9  |
| 20325   | 88.0   | 53.8  | 20326   | 94.6   | 71.1  |
| 30070   | 95.3   | 84.3  |         |        |       |
--------------------------------------------------------------------------------
DATALOADER:0 TEST RESULTS
{}
--------------------------------------------------------------------------------
Testing: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 38/38 [00:25<00:00,  1.50it/s]

tty0013 avatar May 08 '22 04:05 tty0013