MobileNetV3-pytorch
MobileNetV3-pytorch copied to clipboard
Implementation of MobileNetV3 in pytorch
MobileNetV3 in PyTorch
An implementation of MobileNetV3
in PyTorch. MobileNetV3
is an efficient
convolutional neural network architecture for mobile devices. For more information check the paper:
Searching for MobileNetV3
Usage
Clone the repo:
git clone https://github.com/Randl/MobileNetV3-pytorch
pip install -r requirements.txt
Use the model defined in MobileNetV3.py
to run ImageNet example:
python3 -m torch.distributed.launch --nproc_per_node=8 imagenet.py --dataroot "/path/to/imagenet/" --sched clr -b 128 --seed 42 --world-size 8 --sync-bn```
To continue training from checkpoint
python imagenet.py --dataroot "/path/to/imagenet/" --resume "/path/to/checkpoint/folder"
Results
WIP
Classification Checkpoint | MACs (M) | Parameters (M) | Top-1 Accuracy | Top-5 Accuracy | Claimed top-1 | Claimed top-5 | Inference time |
---|---|---|---|---|---|---|---|
MobileNetV3 Large x1.0 224 | 219.80 | 5.481 | 73.53 | 91.14 | 75.2 | - | ~258ms |
mobilenet_v2_1.0_224 | 300 | 3.47 | 72.10 | 90.48 | 71.8 | 91.0 | ~461ms |
Inference time is for single 1080 ti per batch of 128.
You can test it with
python imagenet.py --dataroot "/path/to/imagenet/" --resume "results/mobilenetv3large-v1/model_best0.pth.tar" -e
Other implementations
- https://github.com/d-li14/mobilenetv3.pytorch : 73.152% top-1, with more FLOPs
- https://github.com/xiaolai-sqlai/mobilenetv3 : 75.45% top-1, even more FLOPs
- https://github.com/rwightman/gen-efficientnet-pytorch : 75.634% top-1, seems to be right FLOPs