GPT-SoVITS icon indicating copy to clipboard operation
GPT-SoVITS copied to clipboard

SoVITS训练报错ZeroDivisionError

Open Mrchen116 opened this issue 1 year ago • 13 comments

GPT训练正常。但SoVITS训练报错:

"python" GPT_SoVITS/s2_train.py --config "TEMP/tmp_s2.json"
INFO:meigui:{'train': {'log_interval': 100, 'eval_interval': 500, 'seed': 1234, 'epochs': 10, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 1, 'fp16_run': True, 'lr_decay': 0.999875, 'segment_size': 20480, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'text_low_lr_rate': 0.4, 'pretrained_s2G': 'GPT_SoVITS/pretrained_models/s2G488k.pth', 'pretrained_s2D': 'GPT_SoVITS/pretrained_models/s2D488k.pth', 'if_save_latest': True, 'if_save_every_weights': True, 'save_every_epoch': 5, 'gpu_numbers': '0'}, 'data': {'max_wav_value': 32768.0, 'sampling_rate': 32000, 'filter_length': 2048, 'hop_length': 640, 'win_length': 2048, 'n_mel_channels': 128, 'mel_fmin': 0.0, 'mel_fmax': None, 'add_blank': True, 'n_speakers': 300, 'cleaned_text': True, 'exp_dir': 'logs/meigui'}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [10, 8, 2, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 8, 2, 2], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 512, 'semantic_frame_rate': '25hz', 'freeze_quantizer': True}, 's2_ckpt_dir': 'logs/meigui', 'content_module': 'cnhubert', 'save_weight_dir': 'SoVITS_weights', 'name': 'meigui', 'pretrain': None, 'resume_step': None}
INFO:torch.distributed.distributed_c10d:Added key: store_based_barrier_key:1 to store for rank: 0
INFO:torch.distributed.distributed_c10d:Rank 0: Completed store-based barrier for key:store_based_barrier_key:1 with 1 nodes.
phoneme_data_len: 3
wav_data_len: 99
100%|████████████████████████████████████████| 99/99 [00:00<00:00, 24775.42it/s]
skipped_phone:  0 , skipped_dur:  0
total left:  99
ssl_proj.weight not requires_grad
ssl_proj.bias not requires_grad
INFO:meigui:loaded pretrained GPT_SoVITS/pretrained_models/s2G488k.pth
<All keys matched successfully>
INFO:meigui:loaded pretrained GPT_SoVITS/pretrained_models/s2D488k.pth
<All keys matched successfully>
/root/miniconda3/lib/python3.10/site-packages/torch/optim/lr_scheduler.py:139: UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `lr_scheduler.step()`.  Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
  warnings.warn("Detected call of `lr_scheduler.step()` before `optimizer.step()`. "
Exception ignored in: <function _MultiProcessingDataLoaderIter.__del__ at 0x7f5c840ca710>
Traceback (most recent call last):
  File "/root/miniconda3/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 1478, in __del__
    self._shutdown_workers()
  File "/root/miniconda3/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 1409, in _shutdown_workers
    if not self._shutdown:
AttributeError: '_MultiProcessingDataLoaderIter' object has no attribute '_shutdown'
Traceback (most recent call last):
  File "/root/autodl-tmp/workdir/GPT-SoVITS/GPT_SoVITS/s2_train.py", line 402, in <module>
    main()
  File "/root/autodl-tmp/workdir/GPT-SoVITS/GPT_SoVITS/s2_train.py", line 53, in main
    mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
  File "/root/miniconda3/lib/python3.10/site-packages/torch/multiprocessing/spawn.py", line 239, in spawn
    return start_processes(fn, args, nprocs, join, daemon, start_method='spawn')
  File "/root/miniconda3/lib/python3.10/site-packages/torch/multiprocessing/spawn.py", line 197, in start_processes
    while not context.join():
  File "/root/miniconda3/lib/python3.10/site-packages/torch/multiprocessing/spawn.py", line 160, in join
    raise ProcessRaisedException(msg, error_index, failed_process.pid)
torch.multiprocessing.spawn.ProcessRaisedException: 

-- Process 0 terminated with the following error:
Traceback (most recent call last):
  File "/root/miniconda3/lib/python3.10/site-packages/torch/multiprocessing/spawn.py", line 69, in _wrap
    fn(i, *args)
  File "/root/autodl-tmp/workdir/GPT-SoVITS/GPT_SoVITS/s2_train.py", line 172, in run
    train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler,
  File "/root/autodl-tmp/workdir/GPT-SoVITS/GPT_SoVITS/s2_train.py", line 195, in train_and_evaluate
    for batch_idx, (ssl, ssl_lengths, spec, spec_lengths, y, y_lengths, text, text_lengths) in tqdm(enumerate(train_loader)):
  File "/root/miniconda3/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 436, in __iter__
    self._iterator = self._get_iterator()
  File "/root/miniconda3/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 388, in _get_iterator
    return _MultiProcessingDataLoaderIter(self)
  File "/root/miniconda3/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 994, in __init__
    super().__init__(loader)
  File "/root/miniconda3/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 603, in __init__
    self._sampler_iter = iter(self._index_sampler)
  File "/root/autodl-tmp/workdir/GPT-SoVITS/GPT_SoVITS/module/data_utils.py", line 293, in __iter__
    ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
ZeroDivisionError: integer division or modulo by zero

Mrchen116 avatar Jan 19 '24 07:01 Mrchen116

这个错误在我本地也复现了

Irvinghua avatar Jan 19 '24 08:01 Irvinghua

同样的问题 +1

Tybost avatar Jan 19 '24 09:01 Tybost

+1

csdY123 avatar Jan 19 '24 09:01 csdY123

+1

nux1111 avatar Jan 19 '24 13:01 nux1111

这个bug是 6-name2semantic.tsv 没有正确生成,应该是多进程同步问题,等待作者更新。一个手动解决方法是,在”微调训练“tab页上,手动3个步骤,再一键三连,多试试几次。

meogoo avatar Jan 20 '24 02:01 meogoo

我是SoVits训练正常,GPT训练报错ZeroDivisionError: Traceback (most recent call last): File "H:\speech\GPT-SoVITS\GPT_SoVITS\s1_train.py", line 171, in main(args) File "H:\speech\GPT-SoVITS\GPT_SoVITS\s1_train.py", line 147, in main trainer.fit(model, data_module, ckpt_path=ckpt_path) File "H:\speech\GPT-SoVITS\runtime\lib\site-packages\pytorch_lightning\trainer\trainer.py", line 544, in fit call._call_and_handle_interrupt( File "H:\speech\GPT-SoVITS\runtime\lib\site-packages\pytorch_lightning\trainer\call.py", line 43, in _call_and_handle_interrupt return trainer.strategy.launcher.launch(trainer_fn, *args, trainer=trainer, **kwargs) File "H:\speech\GPT-SoVITS\runtime\lib\site-packages\pytorch_lightning\strategies\launchers\subprocess_script.py", line 102, in launch return function(*args, **kwargs) File "H:\speech\GPT-SoVITS\runtime\lib\site-packages\pytorch_lightning\trainer\trainer.py", line 580, in _fit_impl self._run(model, ckpt_path=ckpt_path) File "H:\speech\GPT-SoVITS\runtime\lib\site-packages\pytorch_lightning\trainer\trainer.py", line 950, in _run call._call_setup_hook(self) # allow user to setup lightning_module in accelerator environment File "H:\speech\GPT-SoVITS\runtime\lib\site-packages\pytorch_lightning\trainer\call.py", line 92, in _call_setup_hook _call_lightning_datamodule_hook(trainer, "setup", stage=fn) File "H:\speech\GPT-SoVITS\runtime\lib\site-packages\pytorch_lightning\trainer\call.py", line 179, in _call_lightning_datamodule_hook return fn(*args, **kwargs) File "H:\speech\GPT-SoVITS\GPT_SoVITS\AR\data\data_module.py", line 29, in setup self._train_dataset = Text2SemanticDataset( File "H:\speech\GPT-SoVITS\GPT_SoVITS\AR\data\dataset.py", line 107, in init self.init_batch() File "H:\speech\GPT-SoVITS\GPT_SoVITS\AR\data\dataset.py", line 187, in init_batch for _ in range(max(2, int(min_num / leng))): ZeroDivisionError: division by zero

NicodemusDu avatar Jan 20 '24 14:01 NicodemusDu

同样的问题开启sovits训练和gpt训练就报错。 File "F:\GPT-SoVITS_\GPT-SoVITS\GPT_SoVITS\s2_train.py", line 402, in main() File "F:\GPT-SoVITS_\GPT-SoVITS\GPT_SoVITS\s2_train.py", line 53, in main mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,)) File "F:\GPT-SoVITS_\GPT-SoVITS\runtime\lib\site-packages\torch\multiprocessing\spawn.py", line 239, in spawn return start_processes(fn, args, nprocs, join, daemon, start_method='spawn') File "F:\GPT-SoVITS_\GPT-SoVITS\runtime\lib\site-packages\torch\multiprocessing\spawn.py", line 197, in start_processes while not context.join(): File "F:\GPT-SoVITS_\GPT-SoVITS\runtime\lib\site-packages\torch\multiprocessing\spawn.py", line 160, in join raise ProcessRaisedException(msg, error_index, failed_process.pid) torch.multiprocessing.spawn.ProcessRaisedException:

-- Process 0 terminated with the following error: Traceback (most recent call last): File "F:\GPT-SoVITS_\GPT-SoVITS\runtime\lib\site-packages\torch\multiprocessing\spawn.py", line 69, in wrap fn(i, *args) File "F:\GPT-SoVITS\GPT-SoVITS\GPT_SoVITS\s2_train.py", line 69, in run train_dataset = TextAudioSpeakerLoader(hps.data)######## File "F:\GPT-SoVITS_\GPT-SoVITS\GPT_SoVITS\module\data_utils.py", line 55, in init for _ in range(max(2, int(min_num / leng))): ZeroDivisionError: division by zero

daxige9527 avatar Jan 20 '24 15:01 daxige9527

Fixed | 通过在计算前添加零持续时间的修改检查来修复该问题。

导航:C:\GPT-SoVITS-beta\GPT-SoVITS\GPT_SoVITS\module 编辑:data_utils Replace All Code / 替换所有代码:

import time
import logging
import os
import random
import traceback
import numpy as np
import torch
import torch.utils.data
from tqdm import tqdm

from module import commons
from module.mel_processing import spectrogram_torch
from text import cleaned_text_to_sequence
from utils import load_wav_to_torch, load_filepaths_and_text
import torch.nn.functional as F
from functools import lru_cache
import requests
from scipy.io import wavfile
from io import BytesIO
from my_utils import load_audio

class TextAudioSpeakerLoader(torch.utils.data.Dataset):
    """
    1) loads audio, speaker_id, text pairs
    2) normalizes text and converts them to sequences of integers
    3) computes spectrograms from audio files.
    """

    def __init__(self, hparams, val=False):
        exp_dir = hparams.exp_dir
        self.path2 = "%s/2-name2text.txt" % exp_dir
        self.path4 = "%s/4-cnhubert" % exp_dir
        self.path5 = "%s/5-wav32k" % exp_dir
        assert os.path.exists(self.path2)
        assert os.path.exists(self.path4)
        assert os.path.exists(self.path5)
        names4 = set([name[:-3] for name in list(os.listdir(self.path4))])  # 去除.pt后缀
        names5 = set(os.listdir(self.path5))
        self.phoneme_data = {}
        with open(self.path2, "r", encoding="utf8") as f:
            lines = f.read().strip("\n").split("\n")

        for line in lines:
            tmp = line.split("\t")
            if (len(tmp) != 4):
                continue
            self.phoneme_data[tmp[0]] = [tmp[1]]

        self.audiopaths_sid_text = list(set(self.phoneme_data) & names4 & names5)
        tmp = self.audiopaths_sid_text
        leng = len(tmp)
        min_num = 100
        if (leng < min_num):
            self.audiopaths_sid_text = []
            for _ in range(max(2, int(min_num / leng))):
                self.audiopaths_sid_text += tmp
        self.max_wav_value = hparams.max_wav_value
        self.sampling_rate = hparams.sampling_rate
        self.filter_length = hparams.filter_length
        self.hop_length = hparams.hop_length
        self.win_length = hparams.win_length
        self.sampling_rate = hparams.sampling_rate
        self.val = val

        random.seed(1234)
        random.shuffle(self.audiopaths_sid_text)

        print("phoneme_data_len:", len(self.phoneme_data.keys()))
        print("wav_data_len:", len(self.audiopaths_sid_text))

        audiopaths_sid_text_new = []
        lengths = []
        skipped_phone = 0
        skipped_dur = 0
        for audiopath in tqdm(self.audiopaths_sid_text):
            try:
                phoneme = self.phoneme_data[audiopath][0]
                phoneme = phoneme.split(' ')
                phoneme_ids = cleaned_text_to_sequence(phoneme)
            except Exception:
                print(f"{audiopath} not in self.phoneme_data !")
                skipped_phone += 1
                continue

            size = os.path.getsize("%s/%s" % (self.path5, audiopath))
            duration = size / self.sampling_rate / 2

            if duration == 0:
                print(f"Zero duration for {audiopath}, skipping...")
                skipped_dur += 1
                continue

            if 54 > duration > 0.6 or self.val:
                audiopaths_sid_text_new.append([audiopath, phoneme_ids])
                lengths.append(size // (2 * self.hop_length))
            else:
                skipped_dur += 1
                continue

        print("skipped_phone: ", skipped_phone, ", skipped_dur: ", skipped_dur)
        print("total left: ", len(audiopaths_sid_text_new))
        assert len(audiopaths_sid_text_new) > 1  # 至少能凑够batch size,这里todo
        self.audiopaths_sid_text = audiopaths_sid_text_new
        self.lengths = lengths

    def get_audio_text_speaker_pair(self, audiopath_sid_text):
        audiopath, phoneme_ids = audiopath_sid_text
        text = torch.FloatTensor(phoneme_ids)
        try:
            spec, wav = self.get_audio("%s/%s" % (self.path5, audiopath))
            with torch.no_grad():
                ssl = torch.load("%s/%s.pt" % (self.path4, audiopath), map_location="cpu")
                if (ssl.shape[-1] != spec.shape[-1]):
                    typee = ssl.dtype
                    ssl = F.pad(ssl.float(), (0, 1), mode="replicate").to(typee)
                ssl.requires_grad = False
        except:
            traceback.print_exc()
            spec = torch.zeros(1025, 100)
            wav = torch.zeros(1, 100 * self.hop_length)
            ssl = torch.zeros(1, 768, 100)
            text = text[-1:]
            print("load audio or ssl error!!!!!!", audiopath)
        return (ssl, spec, wav, text)

    def get_audio(self, filename):
        audio_array = load_audio(filename, self.sampling_rate)  # load_audio的方法是已经归一化到-1~1之间的,不用再/32768
        audio = torch.FloatTensor(audio_array)  # /32768
        audio_norm = audio
        audio_norm = audio_norm.unsqueeze(0)
        spec = spectrogram_torch(audio_norm, self.filter_length, self.sampling_rate, self.hop_length, self.win_length,
                                  center=False)
        spec = torch.squeeze(spec, 0)
        return spec, audio_norm

    def get_sid(self, sid):
        sid = torch.LongTensor([int(sid)])
        return sid

    def __getitem__(self, index):
        # with torch.no_grad():
        return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])

    def __len__(self):
        return len(self.audiopaths_sid_text)

    def random_slice(self, ssl, wav, mel):
        assert abs(ssl.shape[-1] - wav.shape[-1] // self.hop_length) < 3, (
        "first", ssl.shape, wav.shape)

        len_mel = mel.shape[1]
        if self.val:
            reference_mel = mel[:, :len_mel // 3]
            return reference_mel, ssl, wav, mel
        dir = random.randint(0, 1)
        sep_point = random.randint(int(len_mel // 3), int(len_mel // 3 * 2))

        if dir == 0:
            reference_mel = mel[:, :sep_point]
            ssl = ssl[:, :, sep_point:]
            wav2 = wav[:, sep_point * self.hop_length:]
            mel = mel[:, sep_point:]
        else:
            reference_mel = mel[:, sep_point:]
            ssl = ssl[:, :, :sep_point]
            wav2 = wav[:, :sep_point * self.hop_length]
            mel = mel[:, :sep_point]

        assert abs(ssl.shape[-1] - wav2.shape[-1] // self.hop_length) < 3, (
        ssl.shape, wav.shape, wav2.shape, mel.shape, sep_point, self.hop_length, sep_point * self.hop_length, dir)
        return reference_mel, ssl, wav2, mel


class TextAudioSpeakerCollate():
    """ Zero-pads model inputs and targets
    """

    def __init__(self, return_ids=False):
        self.return_ids = return_ids

    def __call__(self, batch):
        """Collate's training batch from normalized text, audio and speaker identities
        PARAMS
        ------
        batch: [text_normalized, spec_normalized, wav_normalized, sid]
        """
        # Right zero-pad all one-hot text sequences to max input length
        _, ids_sorted_decreasing = torch.sort(
            torch.LongTensor([x[1].size(1) for x in batch]),
            dim=0, descending=True)

        max_ssl_len = max([x[0].size(2) for x in batch])
        max_ssl_len = int(2 * ((max_ssl_len // 2) + 1))
        max_spec_len = max([x[1].size(1) for x in batch])
        max_spec_len = int(2 * ((max_spec_len // 2) + 1))
        max_wav_len = max([x[2].size(1) for x in batch])
        max_text_len = max([x[3].size(0) for x in batch])

        ssl_lengths = torch.LongTensor(len(batch))
        spec_lengths = torch.LongTensor(len(batch))
        wav_lengths = torch.LongTensor(len(batch))
        text_lengths = torch.LongTensor(len(batch))

        spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
        wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
        ssl_padded = torch.FloatTensor(len(batch), batch[0][0].size(1), max_ssl_len)
        text_padded = torch.LongTensor(len(batch), max_text_len)

        spec_padded.zero_()
        wav_padded.zero_()
        ssl_padded.zero_()
        text_padded.zero_()

        for i in range(len(ids_sorted_decreasing)):
            row = batch[ids_sorted_decreasing[i]]

            ssl = row[0]
            ssl_padded[i, :, :ssl.size(2)] = ssl[0, :, :]
            ssl_lengths[i] = ssl.size(2)

            spec = row[1]
            spec_padded[i, :, :spec.size(1)] = spec
            spec_lengths[i] = spec.size(1)

            wav = row[2]
            wav_padded[i, :, :wav.size(1)] = wav
            wav_lengths[i] = wav.size(1)

            text = row[3]
            text_padded[i, :text.size(0)] = text
            text_lengths[i] = text.size(0)

        return ssl_padded, ssl_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, text_padded, text_lengths


class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
    """
    Maintain similar input lengths in a batch.
    Length groups are specified by boundaries.
    Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.

    It removes samples which are not included in the boundaries.
    Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
    """

    def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
        super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
        self.lengths = dataset.lengths
        self.batch_size = batch_size
        self.boundaries = boundaries

        self.buckets, self.num_samples_per_bucket = self._create_buckets()
        self.total_size = sum(self.num_samples_per_bucket)
        self.num_samples = self.total_size // self.num_replicas

    def _create_buckets(self):
        buckets = [[] for _ in range(len(self.boundaries) - 1)]
        for i in range(len(self.lengths)):
            length = self.lengths[i]
            idx_bucket = self._bisect(length)
            if idx_bucket != -1:
                buckets[idx_bucket].append(i)

        i = len(buckets) - 1
        while i >= 0:
            if len(buckets[i]) == 0:
                buckets.pop(i)
                self.boundaries.pop(i + 1)
            i -= 1

        num_samples_per_bucket = []
        for i in range(len(buckets)):
            len_bucket = len(buckets[i])
            total_batch_size = self.num_replicas * self.batch_size
            rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size
            num_samples_per_bucket.append(len_bucket + rem)
        return buckets, num_samples_per_bucket

    def __iter__(self):
        g = torch.Generator()
        g.manual_seed(self.epoch)

        indices = []
        if self.shuffle:
            for bucket in self.buckets:
                indices.append(torch.randperm(len(bucket), generator=g).tolist())
        else:
            for bucket in self.buckets:
                indices.append(list(range(len(bucket))))

        batches = []
        for i in range(len(self.buckets)):
            bucket = self.buckets[i]
            len_bucket = len(bucket)
            ids_bucket = indices[i]
            num_samples_bucket = self.num_samples_per_bucket[i]

            rem = num_samples_bucket - len_bucket
            ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]

            ids_bucket = ids_bucket[self.rank::self.num_replicas]

            for j in range(len(ids_bucket) // self.batch_size):
                batch = [bucket[idx] for idx in ids_bucket[j * self.batch_size:(j + 1) * self.batch_size]]
                batches.append(batch)

        if self.shuffle:
            batch_ids = torch.randperm(len(batches), generator=g).tolist()
            batches = [batches[i] for i in batch_ids]
        self.batches = batches

        assert len(self.batches) * self.batch_size == self.num_samples
        return iter(self.batches)

    def _bisect(self, x, lo=0, hi=None):
        if hi is None:
            hi = len(self.boundaries) - 1

        if hi > lo:
            mid = (hi + lo) // 2
            if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
                return mid
            elif x <= self.boundaries[mid]:
                return self._bisect(x, lo, mid)
            else:
                return self._bisect(x, mid + 1, hi)
        else:
            return -1

    def __len__(self):
        return self.num_samples // self.batch_size


Tybost avatar Jan 20 '24 15:01 Tybost

感谢@Tybost,把你的代码贴进去后,微调成功通过了。

Irvinghua avatar Jan 21 '24 03:01 Irvinghua

def _bisect(self, x, lo=0, hi=None):
    if hi is None:
        hi = len(self.boundaries) - 1

    if hi > lo:
        mid = (hi + lo) // 2
        if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
            return mid
        elif x <= self.boundaries[mid]:
            return self._bisect(x, lo, mid)
        else:
            return self._bisect(x, mid + 1, hi)
    else:
        return -1

def __len__(self):
    return self.num_samples // self.batch_size

i = len(buckets) - 1 while i >= 0: if len(buckets[i]) == 0: buckets.pop(i) self.boundaries.pop(i + 1) i -= 1 这段内容是什么意思?也复制到 data_utils 吗??求解答

daxige9527 avatar Jan 21 '24 07:01 daxige9527

i = len(buckets) - 1 while i >= 0: if len(buckets[i]) == 0: buckets.pop(i) self.boundaries.pop(i + 1) i -= 1 这段内容是什么意思?也复制到 data_utils 吗??求解答

对不起,我只是指出了添加的代码。当 len_bucket 为零时,尝试计算余数或商时会发生错误。我修改了 DistributedBucketSampler 类中的 _create_buckets 方法,确保循环运行直到 i 变得小于 0,从而防止除以零的可能性。

只需粘贴并替换data_utils.py模块下的所有现有代码即可进行更新。

Tybost avatar Jan 21 '24 07:01 Tybost

楼上测试通过,我将合并你的代码@Tybost

RVC-Boss avatar Jan 21 '24 14:01 RVC-Boss

前一个步骤产生的06文件始终是空的,这类问题有朋友遇到么

Liu-yixi avatar Jan 23 '24 11:01 Liu-yixi

代码测试通过,后续网友报告这个问题的频率大幅降低了。

RVC-Boss avatar Jan 27 '24 07:01 RVC-Boss

GPT训练正常。但SoVITS训练报错:

"python" GPT_SoVITS/s2_train.py --config "TEMP/tmp_s2.json"
INFO:meigui:{'train': {'log_interval': 100, 'eval_interval': 500, 'seed': 1234, 'epochs': 10, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 1, 'fp16_run': True, 'lr_decay': 0.999875, 'segment_size': 20480, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'text_low_lr_rate': 0.4, 'pretrained_s2G': 'GPT_SoVITS/pretrained_models/s2G488k.pth', 'pretrained_s2D': 'GPT_SoVITS/pretrained_models/s2D488k.pth', 'if_save_latest': True, 'if_save_every_weights': True, 'save_every_epoch': 5, 'gpu_numbers': '0'}, 'data': {'max_wav_value': 32768.0, 'sampling_rate': 32000, 'filter_length': 2048, 'hop_length': 640, 'win_length': 2048, 'n_mel_channels': 128, 'mel_fmin': 0.0, 'mel_fmax': None, 'add_blank': True, 'n_speakers': 300, 'cleaned_text': True, 'exp_dir': 'logs/meigui'}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [10, 8, 2, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 8, 2, 2], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 512, 'semantic_frame_rate': '25hz', 'freeze_quantizer': True}, 's2_ckpt_dir': 'logs/meigui', 'content_module': 'cnhubert', 'save_weight_dir': 'SoVITS_weights', 'name': 'meigui', 'pretrain': None, 'resume_step': None}
INFO:torch.distributed.distributed_c10d:Added key: store_based_barrier_key:1 to store for rank: 0
INFO:torch.distributed.distributed_c10d:Rank 0: Completed store-based barrier for key:store_based_barrier_key:1 with 1 nodes.
phoneme_data_len: 3
wav_data_len: 99
100%|████████████████████████████████████████| 99/99 [00:00<00:00, 24775.42it/s]
skipped_phone:  0 , skipped_dur:  0
total left:  99
ssl_proj.weight not requires_grad
ssl_proj.bias not requires_grad
INFO:meigui:loaded pretrained GPT_SoVITS/pretrained_models/s2G488k.pth
<All keys matched successfully>
INFO:meigui:loaded pretrained GPT_SoVITS/pretrained_models/s2D488k.pth
<All keys matched successfully>
/root/miniconda3/lib/python3.10/site-packages/torch/optim/lr_scheduler.py:139: UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `lr_scheduler.step()`.  Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
  warnings.warn("Detected call of `lr_scheduler.step()` before `optimizer.step()`. "
Exception ignored in: <function _MultiProcessingDataLoaderIter.__del__ at 0x7f5c840ca710>
Traceback (most recent call last):
  File "/root/miniconda3/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 1478, in __del__
    self._shutdown_workers()
  File "/root/miniconda3/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 1409, in _shutdown_workers
    if not self._shutdown:
AttributeError: '_MultiProcessingDataLoaderIter' object has no attribute '_shutdown'
Traceback (most recent call last):
  File "/root/autodl-tmp/workdir/GPT-SoVITS/GPT_SoVITS/s2_train.py", line 402, in <module>
    main()
  File "/root/autodl-tmp/workdir/GPT-SoVITS/GPT_SoVITS/s2_train.py", line 53, in main
    mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
  File "/root/miniconda3/lib/python3.10/site-packages/torch/multiprocessing/spawn.py", line 239, in spawn
    return start_processes(fn, args, nprocs, join, daemon, start_method='spawn')
  File "/root/miniconda3/lib/python3.10/site-packages/torch/multiprocessing/spawn.py", line 197, in start_processes
    while not context.join():
  File "/root/miniconda3/lib/python3.10/site-packages/torch/multiprocessing/spawn.py", line 160, in join
    raise ProcessRaisedException(msg, error_index, failed_process.pid)
torch.multiprocessing.spawn.ProcessRaisedException: 

-- Process 0 terminated with the following error:
Traceback (most recent call last):
  File "/root/miniconda3/lib/python3.10/site-packages/torch/multiprocessing/spawn.py", line 69, in _wrap
    fn(i, *args)
  File "/root/autodl-tmp/workdir/GPT-SoVITS/GPT_SoVITS/s2_train.py", line 172, in run
    train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler,
  File "/root/autodl-tmp/workdir/GPT-SoVITS/GPT_SoVITS/s2_train.py", line 195, in train_and_evaluate
    for batch_idx, (ssl, ssl_lengths, spec, spec_lengths, y, y_lengths, text, text_lengths) in tqdm(enumerate(train_loader)):
  File "/root/miniconda3/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 436, in __iter__
    self._iterator = self._get_iterator()
  File "/root/miniconda3/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 388, in _get_iterator
    return _MultiProcessingDataLoaderIter(self)
  File "/root/miniconda3/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 994, in __init__
    super().__init__(loader)
  File "/root/miniconda3/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 603, in __init__
    self._sampler_iter = iter(self._index_sampler)
  File "/root/autodl-tmp/workdir/GPT-SoVITS/GPT_SoVITS/module/data_utils.py", line 293, in __iter__
    ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
ZeroDivisionError: integer division or modulo by zero

+1

Gan37 avatar Feb 19 '24 13:02 Gan37

我也有这个问题

ThreeManager785 avatar Mar 01 '24 15:03 ThreeManager785

Fixed | 通过在计算前添加零持续时间的修改检查来修复该问题。

导航:C:\GPT-SoVITS-beta\GPT-SoVITS\GPT_SoVITS\module 编辑:data_utils Replace All Code / 替换所有代码:

import time
import logging
import os
import random
import traceback
import numpy as np
import torch
import torch.utils.data
from tqdm import tqdm

from module import commons
from module.mel_processing import spectrogram_torch
from text import cleaned_text_to_sequence
from utils import load_wav_to_torch, load_filepaths_and_text
import torch.nn.functional as F
from functools import lru_cache
import requests
from scipy.io import wavfile
from io import BytesIO
from my_utils import load_audio

class TextAudioSpeakerLoader(torch.utils.data.Dataset):
    """
    1) loads audio, speaker_id, text pairs
    2) normalizes text and converts them to sequences of integers
    3) computes spectrograms from audio files.
    """

    def __init__(self, hparams, val=False):
        exp_dir = hparams.exp_dir
        self.path2 = "%s/2-name2text.txt" % exp_dir
        self.path4 = "%s/4-cnhubert" % exp_dir
        self.path5 = "%s/5-wav32k" % exp_dir
        assert os.path.exists(self.path2)
        assert os.path.exists(self.path4)
        assert os.path.exists(self.path5)
        names4 = set([name[:-3] for name in list(os.listdir(self.path4))])  # 去除.pt后缀
        names5 = set(os.listdir(self.path5))
        self.phoneme_data = {}
        with open(self.path2, "r", encoding="utf8") as f:
            lines = f.read().strip("\n").split("\n")

        for line in lines:
            tmp = line.split("\t")
            if (len(tmp) != 4):
                continue
            self.phoneme_data[tmp[0]] = [tmp[1]]

        self.audiopaths_sid_text = list(set(self.phoneme_data) & names4 & names5)
        tmp = self.audiopaths_sid_text
        leng = len(tmp)
        min_num = 100
        if (leng < min_num):
            self.audiopaths_sid_text = []
            for _ in range(max(2, int(min_num / leng))):
                self.audiopaths_sid_text += tmp
        self.max_wav_value = hparams.max_wav_value
        self.sampling_rate = hparams.sampling_rate
        self.filter_length = hparams.filter_length
        self.hop_length = hparams.hop_length
        self.win_length = hparams.win_length
        self.sampling_rate = hparams.sampling_rate
        self.val = val

        random.seed(1234)
        random.shuffle(self.audiopaths_sid_text)

        print("phoneme_data_len:", len(self.phoneme_data.keys()))
        print("wav_data_len:", len(self.audiopaths_sid_text))

        audiopaths_sid_text_new = []
        lengths = []
        skipped_phone = 0
        skipped_dur = 0
        for audiopath in tqdm(self.audiopaths_sid_text):
            try:
                phoneme = self.phoneme_data[audiopath][0]
                phoneme = phoneme.split(' ')
                phoneme_ids = cleaned_text_to_sequence(phoneme)
            except Exception:
                print(f"{audiopath} not in self.phoneme_data !")
                skipped_phone += 1
                continue

            size = os.path.getsize("%s/%s" % (self.path5, audiopath))
            duration = size / self.sampling_rate / 2

            if duration == 0:
                print(f"Zero duration for {audiopath}, skipping...")
                skipped_dur += 1
                continue

            if 54 > duration > 0.6 or self.val:
                audiopaths_sid_text_new.append([audiopath, phoneme_ids])
                lengths.append(size // (2 * self.hop_length))
            else:
                skipped_dur += 1
                continue

        print("skipped_phone: ", skipped_phone, ", skipped_dur: ", skipped_dur)
        print("total left: ", len(audiopaths_sid_text_new))
        assert len(audiopaths_sid_text_new) > 1  # 至少能凑够batch size,这里todo
        self.audiopaths_sid_text = audiopaths_sid_text_new
        self.lengths = lengths

    def get_audio_text_speaker_pair(self, audiopath_sid_text):
        audiopath, phoneme_ids = audiopath_sid_text
        text = torch.FloatTensor(phoneme_ids)
        try:
            spec, wav = self.get_audio("%s/%s" % (self.path5, audiopath))
            with torch.no_grad():
                ssl = torch.load("%s/%s.pt" % (self.path4, audiopath), map_location="cpu")
                if (ssl.shape[-1] != spec.shape[-1]):
                    typee = ssl.dtype
                    ssl = F.pad(ssl.float(), (0, 1), mode="replicate").to(typee)
                ssl.requires_grad = False
        except:
            traceback.print_exc()
            spec = torch.zeros(1025, 100)
            wav = torch.zeros(1, 100 * self.hop_length)
            ssl = torch.zeros(1, 768, 100)
            text = text[-1:]
            print("load audio or ssl error!!!!!!", audiopath)
        return (ssl, spec, wav, text)

    def get_audio(self, filename):
        audio_array = load_audio(filename, self.sampling_rate)  # load_audio的方法是已经归一化到-1~1之间的,不用再/32768
        audio = torch.FloatTensor(audio_array)  # /32768
        audio_norm = audio
        audio_norm = audio_norm.unsqueeze(0)
        spec = spectrogram_torch(audio_norm, self.filter_length, self.sampling_rate, self.hop_length, self.win_length,
                                  center=False)
        spec = torch.squeeze(spec, 0)
        return spec, audio_norm

    def get_sid(self, sid):
        sid = torch.LongTensor([int(sid)])
        return sid

    def __getitem__(self, index):
        # with torch.no_grad():
        return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])

    def __len__(self):
        return len(self.audiopaths_sid_text)

    def random_slice(self, ssl, wav, mel):
        assert abs(ssl.shape[-1] - wav.shape[-1] // self.hop_length) < 3, (
        "first", ssl.shape, wav.shape)

        len_mel = mel.shape[1]
        if self.val:
            reference_mel = mel[:, :len_mel // 3]
            return reference_mel, ssl, wav, mel
        dir = random.randint(0, 1)
        sep_point = random.randint(int(len_mel // 3), int(len_mel // 3 * 2))

        if dir == 0:
            reference_mel = mel[:, :sep_point]
            ssl = ssl[:, :, sep_point:]
            wav2 = wav[:, sep_point * self.hop_length:]
            mel = mel[:, sep_point:]
        else:
            reference_mel = mel[:, sep_point:]
            ssl = ssl[:, :, :sep_point]
            wav2 = wav[:, :sep_point * self.hop_length]
            mel = mel[:, :sep_point]

        assert abs(ssl.shape[-1] - wav2.shape[-1] // self.hop_length) < 3, (
        ssl.shape, wav.shape, wav2.shape, mel.shape, sep_point, self.hop_length, sep_point * self.hop_length, dir)
        return reference_mel, ssl, wav2, mel


class TextAudioSpeakerCollate():
    """ Zero-pads model inputs and targets
    """

    def __init__(self, return_ids=False):
        self.return_ids = return_ids

    def __call__(self, batch):
        """Collate's training batch from normalized text, audio and speaker identities
        PARAMS
        ------
        batch: [text_normalized, spec_normalized, wav_normalized, sid]
        """
        # Right zero-pad all one-hot text sequences to max input length
        _, ids_sorted_decreasing = torch.sort(
            torch.LongTensor([x[1].size(1) for x in batch]),
            dim=0, descending=True)

        max_ssl_len = max([x[0].size(2) for x in batch])
        max_ssl_len = int(2 * ((max_ssl_len // 2) + 1))
        max_spec_len = max([x[1].size(1) for x in batch])
        max_spec_len = int(2 * ((max_spec_len // 2) + 1))
        max_wav_len = max([x[2].size(1) for x in batch])
        max_text_len = max([x[3].size(0) for x in batch])

        ssl_lengths = torch.LongTensor(len(batch))
        spec_lengths = torch.LongTensor(len(batch))
        wav_lengths = torch.LongTensor(len(batch))
        text_lengths = torch.LongTensor(len(batch))

        spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
        wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
        ssl_padded = torch.FloatTensor(len(batch), batch[0][0].size(1), max_ssl_len)
        text_padded = torch.LongTensor(len(batch), max_text_len)

        spec_padded.zero_()
        wav_padded.zero_()
        ssl_padded.zero_()
        text_padded.zero_()

        for i in range(len(ids_sorted_decreasing)):
            row = batch[ids_sorted_decreasing[i]]

            ssl = row[0]
            ssl_padded[i, :, :ssl.size(2)] = ssl[0, :, :]
            ssl_lengths[i] = ssl.size(2)

            spec = row[1]
            spec_padded[i, :, :spec.size(1)] = spec
            spec_lengths[i] = spec.size(1)

            wav = row[2]
            wav_padded[i, :, :wav.size(1)] = wav
            wav_lengths[i] = wav.size(1)

            text = row[3]
            text_padded[i, :text.size(0)] = text
            text_lengths[i] = text.size(0)

        return ssl_padded, ssl_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, text_padded, text_lengths


class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
    """
    Maintain similar input lengths in a batch.
    Length groups are specified by boundaries.
    Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.

    It removes samples which are not included in the boundaries.
    Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
    """

    def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
        super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
        self.lengths = dataset.lengths
        self.batch_size = batch_size
        self.boundaries = boundaries

        self.buckets, self.num_samples_per_bucket = self._create_buckets()
        self.total_size = sum(self.num_samples_per_bucket)
        self.num_samples = self.total_size // self.num_replicas

    def _create_buckets(self):
        buckets = [[] for _ in range(len(self.boundaries) - 1)]
        for i in range(len(self.lengths)):
            length = self.lengths[i]
            idx_bucket = self._bisect(length)
            if idx_bucket != -1:
                buckets[idx_bucket].append(i)

        i = len(buckets) - 1
        while i >= 0:
            if len(buckets[i]) == 0:
                buckets.pop(i)
                self.boundaries.pop(i + 1)
            i -= 1

        num_samples_per_bucket = []
        for i in range(len(buckets)):
            len_bucket = len(buckets[i])
            total_batch_size = self.num_replicas * self.batch_size
            rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size
            num_samples_per_bucket.append(len_bucket + rem)
        return buckets, num_samples_per_bucket

    def __iter__(self):
        g = torch.Generator()
        g.manual_seed(self.epoch)

        indices = []
        if self.shuffle:
            for bucket in self.buckets:
                indices.append(torch.randperm(len(bucket), generator=g).tolist())
        else:
            for bucket in self.buckets:
                indices.append(list(range(len(bucket))))

        batches = []
        for i in range(len(self.buckets)):
            bucket = self.buckets[i]
            len_bucket = len(bucket)
            ids_bucket = indices[i]
            num_samples_bucket = self.num_samples_per_bucket[i]

            rem = num_samples_bucket - len_bucket
            ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]

            ids_bucket = ids_bucket[self.rank::self.num_replicas]

            for j in range(len(ids_bucket) // self.batch_size):
                batch = [bucket[idx] for idx in ids_bucket[j * self.batch_size:(j + 1) * self.batch_size]]
                batches.append(batch)

        if self.shuffle:
            batch_ids = torch.randperm(len(batches), generator=g).tolist()
            batches = [batches[i] for i in batch_ids]
        self.batches = batches

        assert len(self.batches) * self.batch_size == self.num_samples
        return iter(self.batches)

    def _bisect(self, x, lo=0, hi=None):
        if hi is None:
            hi = len(self.boundaries) - 1

        if hi > lo:
            mid = (hi + lo) // 2
            if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
                return mid
            elif x <= self.boundaries[mid]:
                return self._bisect(x, lo, mid)
            else:
                return self._bisect(x, mid + 1, hi)
        else:
            return -1

    def __len__(self):
        return self.num_samples // self.batch_size

感谢大佬,但是把文件代码改完后报如下的错 Traceback (most recent call last): File "D:\GPT-SOVITS\GPT_SoVITS\s2_train.py", line 600, in main() File "D:\GPT-SOVITS\GPT_SoVITS\s2_train.py", line 56, in main mp.spawn( File "C:\Users*\anaconda3\envs\ame\lib\site-packages\torch\multiprocessing\spawn.py", line 241, in spawn return start_processes(fn, args, nprocs, join, daemon, start_method="spawn") File "C:\Users*\anaconda3\envs\ame\lib\site-packages\torch\multiprocessing\spawn.py", line 197, in start_processes while not context.join(): File "C:\Users***\anaconda3\envs\ame\lib\site-packages\torch\multiprocessing\spawn.py", line 158, in join raise ProcessRaisedException(msg, error_index, failed_process.pid) torch.multiprocessing.spawn.ProcessRaisedException:

-- Process 0 terminated with the following error: Traceback (most recent call last): File "C:\Users***\anaconda3\envs\ame\lib\site-packages\torch\multiprocessing\spawn.py", line 68, in _wrap fn(i, *args) File "D:\GPT-SOVITS\GPT_SoVITS\s2_train.py", line 85, in run train_dataset = TextAudioSpeakerLoader(hps.data) ######## File "D:\GPT-SOVITS\GPT_SoVITS\module\data_utils.py", line 34, in init assert os.path.exists(self.path2) AssertionError

ZackZhao233 avatar Mar 08 '24 13:03 ZackZhao233

GPT训练正常。但SoVITS训练报错:

"python" GPT_SoVITS/s2_train.py --config "TEMP/tmp_s2.json"
INFO:meigui:{'train': {'log_interval': 100, 'eval_interval': 500, 'seed': 1234, 'epochs': 10, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 1, 'fp16_run': True, 'lr_decay': 0.999875, 'segment_size': 20480, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'text_low_lr_rate': 0.4, 'pretrained_s2G': 'GPT_SoVITS/pretrained_models/s2G488k.pth', 'pretrained_s2D': 'GPT_SoVITS/pretrained_models/s2D488k.pth', 'if_save_latest': True, 'if_save_every_weights': True, 'save_every_epoch': 5, 'gpu_numbers': '0'}, 'data': {'max_wav_value': 32768.0, 'sampling_rate': 32000, 'filter_length': 2048, 'hop_length': 640, 'win_length': 2048, 'n_mel_channels': 128, 'mel_fmin': 0.0, 'mel_fmax': None, 'add_blank': True, 'n_speakers': 300, 'cleaned_text': True, 'exp_dir': 'logs/meigui'}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [10, 8, 2, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 8, 2, 2], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 512, 'semantic_frame_rate': '25hz', 'freeze_quantizer': True}, 's2_ckpt_dir': 'logs/meigui', 'content_module': 'cnhubert', 'save_weight_dir': 'SoVITS_weights', 'name': 'meigui', 'pretrain': None, 'resume_step': None}
INFO:torch.distributed.distributed_c10d:Added key: store_based_barrier_key:1 to store for rank: 0
INFO:torch.distributed.distributed_c10d:Rank 0: Completed store-based barrier for key:store_based_barrier_key:1 with 1 nodes.
phoneme_data_len: 3
wav_data_len: 99
100%|████████████████████████████████████████| 99/99 [00:00<00:00, 24775.42it/s]
skipped_phone:  0 , skipped_dur:  0
total left:  99
ssl_proj.weight not requires_grad
ssl_proj.bias not requires_grad
INFO:meigui:loaded pretrained GPT_SoVITS/pretrained_models/s2G488k.pth
<All keys matched successfully>
INFO:meigui:loaded pretrained GPT_SoVITS/pretrained_models/s2D488k.pth
<All keys matched successfully>
/root/miniconda3/lib/python3.10/site-packages/torch/optim/lr_scheduler.py:139: UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `lr_scheduler.step()`.  Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
  warnings.warn("Detected call of `lr_scheduler.step()` before `optimizer.step()`. "
Exception ignored in: <function _MultiProcessingDataLoaderIter.__del__ at 0x7f5c840ca710>
Traceback (most recent call last):
  File "/root/miniconda3/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 1478, in __del__
    self._shutdown_workers()
  File "/root/miniconda3/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 1409, in _shutdown_workers
    if not self._shutdown:
AttributeError: '_MultiProcessingDataLoaderIter' object has no attribute '_shutdown'
Traceback (most recent call last):
  File "/root/autodl-tmp/workdir/GPT-SoVITS/GPT_SoVITS/s2_train.py", line 402, in <module>
    main()
  File "/root/autodl-tmp/workdir/GPT-SoVITS/GPT_SoVITS/s2_train.py", line 53, in main
    mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
  File "/root/miniconda3/lib/python3.10/site-packages/torch/multiprocessing/spawn.py", line 239, in spawn
    return start_processes(fn, args, nprocs, join, daemon, start_method='spawn')
  File "/root/miniconda3/lib/python3.10/site-packages/torch/multiprocessing/spawn.py", line 197, in start_processes
    while not context.join():
  File "/root/miniconda3/lib/python3.10/site-packages/torch/multiprocessing/spawn.py", line 160, in join
    raise ProcessRaisedException(msg, error_index, failed_process.pid)
torch.multiprocessing.spawn.ProcessRaisedException: 

-- Process 0 terminated with the following error:
Traceback (most recent call last):
  File "/root/miniconda3/lib/python3.10/site-packages/torch/multiprocessing/spawn.py", line 69, in _wrap
    fn(i, *args)
  File "/root/autodl-tmp/workdir/GPT-SoVITS/GPT_SoVITS/s2_train.py", line 172, in run
    train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler,
  File "/root/autodl-tmp/workdir/GPT-SoVITS/GPT_SoVITS/s2_train.py", line 195, in train_and_evaluate
    for batch_idx, (ssl, ssl_lengths, spec, spec_lengths, y, y_lengths, text, text_lengths) in tqdm(enumerate(train_loader)):
  File "/root/miniconda3/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 436, in __iter__
    self._iterator = self._get_iterator()
  File "/root/miniconda3/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 388, in _get_iterator
    return _MultiProcessingDataLoaderIter(self)
  File "/root/miniconda3/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 994, in __init__
    super().__init__(loader)
  File "/root/miniconda3/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 603, in __init__
    self._sampler_iter = iter(self._index_sampler)
  File "/root/autodl-tmp/workdir/GPT-SoVITS/GPT_SoVITS/module/data_utils.py", line 293, in __iter__
    ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
ZeroDivisionError: integer division or modulo by zero

请问解决了吗?

Danny0802 avatar Mar 13 '24 09:03 Danny0802

data_utils

请问你的这个报错解决了吗

Danny0802 avatar Mar 13 '24 09:03 Danny0802

这个得看音频文件路径吧,标注文件里的是相对路径,liunx是读不到的

future2233 avatar Mar 21 '24 02:03 future2233

这个得看音频文件路径吧,标注文件里的是相对路径,liunx是读不到的

确实,我的Mac也读不到,改成绝对路径就解决了

xiao-xingshi avatar Apr 08 '24 18:04 xiao-xingshi

解决了,是我当时还没用明白软件的原因。

| | Zack | | @.*** | ---- 回复的原邮件 ---- | 发件人 | @.> | | 发送日期 | 2024年3月13日 17:54 | | 收件人 | @.> | | 抄送人 | @.>, @.> | | 主题 | Re: [RVC-Boss/GPT-SoVITS] SoVITS训练报错ZeroDivisionError (Issue #79) |

GPT训练正常。但SoVITS训练报错:

"python" GPT_SoVITS/s2_train.py --config "TEMP/tmp_s2.json" INFO:meigui:{'train': {'log_interval': 100, 'eval_interval': 500, 'seed': 1234, 'epochs': 10, 'learning_rate': 0.0001, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 1, 'fp16_run': True, 'lr_decay': 0.999875, 'segment_size': 20480, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0, 'text_low_lr_rate': 0.4, 'pretrained_s2G': 'GPT_SoVITS/pretrained_models/s2G488k.pth', 'pretrained_s2D': 'GPT_SoVITS/pretrained_models/s2D488k.pth', 'if_save_latest': True, 'if_save_every_weights': True, 'save_every_epoch': 5, 'gpu_numbers': '0'}, 'data': {'max_wav_value': 32768.0, 'sampling_rate': 32000, 'filter_length': 2048, 'hop_length': 640, 'win_length': 2048, 'n_mel_channels': 128, 'mel_fmin': 0.0, 'mel_fmax': None, 'add_blank': True, 'n_speakers': 300, 'cleaned_text': True, 'exp_dir': 'logs/meigui'}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [10, 8, 2, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 8, 2, 2], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 512, 'semantic_frame_rate': '25hz', 'freeze_quantizer': True}, 's2_ckpt_dir': 'logs/meigui', 'content_module': 'cnhubert', 'save_weight_dir': 'SoVITS_weights', 'name': 'meigui', 'pretrain': None, 'resume_step': None} INFO:torch.distributed.distributed_c10d:Added key: store_based_barrier_key:1 to store for rank: 0 INFO:torch.distributed.distributed_c10d:Rank 0: Completed store-based barrier for key:store_based_barrier_key:1 with 1 nodes. phoneme_data_len: 3 wav_data_len: 99 100%|████████████████████████████████████████| 99/99 [00:00<00:00, 24775.42it/s] skipped_phone: 0 , skipped_dur: 0 total left: 99 ssl_proj.weight not requires_grad ssl_proj.bias not requires_grad INFO:meigui:loaded pretrained GPT_SoVITS/pretrained_models/s2G488k.pth <All keys matched successfully> INFO:meigui:loaded pretrained GPT_SoVITS/pretrained_models/s2D488k.pth <All keys matched successfully> /root/miniconda3/lib/python3.10/site-packages/torch/optim/lr_scheduler.py:139: UserWarning: Detected call of lr_scheduler.step() before optimizer.step(). In PyTorch 1.1.0 and later, you should call them in the opposite order: optimizer.step() before lr_scheduler.step(). Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate warnings.warn("Detected call of lr_scheduler.step() before optimizer.step(). " Exception ignored in: <function _MultiProcessingDataLoaderIter.del at 0x7f5c840ca710> Traceback (most recent call last): File "/root/miniconda3/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 1478, in del self._shutdown_workers() File "/root/miniconda3/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 1409, in _shutdown_workers if not self._shutdown: AttributeError: '_MultiProcessingDataLoaderIter' object has no attribute '_shutdown' Traceback (most recent call last): File "/root/autodl-tmp/workdir/GPT-SoVITS/GPT_SoVITS/s2_train.py", line 402, in main() File "/root/autodl-tmp/workdir/GPT-SoVITS/GPT_SoVITS/s2_train.py", line 53, in main mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,)) File "/root/miniconda3/lib/python3.10/site-packages/torch/multiprocessing/spawn.py", line 239, in spawn return start_processes(fn, args, nprocs, join, daemon, start_method='spawn') File "/root/miniconda3/lib/python3.10/site-packages/torch/multiprocessing/spawn.py", line 197, in start_processes while not context.join(): File "/root/miniconda3/lib/python3.10/site-packages/torch/multiprocessing/spawn.py", line 160, in join raise ProcessRaisedException(msg, error_index, failed_process.pid) torch.multiprocessing.spawn.ProcessRaisedException:

-- Process 0 terminated with the following error: Traceback (most recent call last): File "/root/miniconda3/lib/python3.10/site-packages/torch/multiprocessing/spawn.py", line 69, in _wrap fn(i, *args) File "/root/autodl-tmp/workdir/GPT-SoVITS/GPT_SoVITS/s2_train.py", line 172, in run train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, File "/root/autodl-tmp/workdir/GPT-SoVITS/GPT_SoVITS/s2_train.py", line 195, in train_and_evaluate for batch_idx, (ssl, ssl_lengths, spec, spec_lengths, y, y_lengths, text, text_lengths) in tqdm(enumerate(train_loader)): File "/root/miniconda3/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 436, in iter self._iterator = self._get_iterator() File "/root/miniconda3/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 388, in _get_iterator return _MultiProcessingDataLoaderIter(self) File "/root/miniconda3/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 994, in init super().init(loader) File "/root/miniconda3/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 603, in init self._sampler_iter = iter(self._index_sampler) File "/root/autodl-tmp/workdir/GPT-SoVITS/GPT_SoVITS/module/data_utils.py", line 293, in iter ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)] ZeroDivisionError: integer division or modulo by zero

请问解决了吗?

— Reply to this email directly, view it on GitHub, or unsubscribe. You are receiving this because you commented.Message ID: @.***>

ZackZhao233 avatar Apr 12 '24 08:04 ZackZhao233