AMDMIGraphX
AMDMIGraphX copied to clipboard
Add propagate_precision pass
Codecov Report
Attention: Patch coverage is 94.11765%
with 5 lines
in your changes are missing coverage. Please review.
Project coverage is 91.76%. Comparing base (
84fc9f0
) to head (da8471d
).
Files | Patch % | Lines |
---|---|---|
src/propagate_precision.cpp | 94.04% | 5 Missing :warning: |
Additional details and impacted files
@@ Coverage Diff @@
## develop #2853 +/- ##
===========================================
+ Coverage 91.75% 91.76% +0.01%
===========================================
Files 473 475 +2
Lines 17958 18043 +85
===========================================
+ Hits 16478 16558 +80
- Misses 1480 1485 +5
:umbrella: View full report in Codecov by Sentry.
:loudspeaker: Have feedback on the report? Share it here.
Test | Batch | Rate new 0f785b |
Rate old 5ba023 |
Diff | Compare |
---|---|---|---|---|---|
torchvision-resnet50 | 64 | 2,826.08 | 2,824.95 | 0.04% | :white_check_mark: |
torchvision-resnet50_fp16 | 64 | 6,579.77 | 6,575.26 | 0.07% | :white_check_mark: |
torchvision-densenet121 | 32 | 2,105.76 | 2,101.96 | 0.18% | :white_check_mark: |
torchvision-densenet121_fp16 | 32 | 3,696.98 | 3,683.24 | 0.37% | :white_check_mark: |
torchvision-inceptionv3 | 32 | 1,602.40 | 1,606.31 | -0.24% | :white_check_mark: |
torchvision-inceptionv3_fp16 | 32 | 2,551.04 | 2,555.93 | -0.19% | :white_check_mark: |
cadene-inceptionv4 | 16 | 717.22 | 717.78 | -0.08% | :white_check_mark: |
cadene-resnext64x4 | 16 | 680.55 | 680.75 | -0.03% | :white_check_mark: |
slim-mobilenet | 64 | 5,900.63 | 5,910.66 | -0.17% | :white_check_mark: |
slim-nasnetalarge | 64 | 153.92 | 153.88 | 0.03% | :white_check_mark: |
slim-resnet50v2 | 64 | 2,592.86 | 2,590.48 | 0.09% | :white_check_mark: |
bert-mrpc-onnx | 8 | 920.94 | 960.32 | -4.10% | :red_circle: |
bert-mrpc-tf | 1 | 399.57 | 400.86 | -0.32% | :white_check_mark: |
pytorch-examples-wlang-gru | 1 | 392.57 | 394.04 | -0.37% | :white_check_mark: |
pytorch-examples-wlang-lstm | 1 | 368.63 | 366.42 | 0.60% | :white_check_mark: |
torchvision-resnet50_1 | 1 | 603.29 | 606.33 | -0.50% | :white_check_mark: |
cadene-dpn92_1 | 1 | 389.75 | 393.42 | -0.93% | :white_check_mark: |
cadene-resnext101_1 | 1 | 331.98 | 332.05 | -0.02% | :white_check_mark: |
onnx-taau-downsample | 1 | 307.25 | 307.56 | -0.10% | :white_check_mark: |
dlrm-criteoterabyte | 1 | 28.79 | 28.80 | -0.01% | :white_check_mark: |
dlrm-criteoterabyte_fp16 | 1 | 48.40 | 48.29 | 0.24% | :white_check_mark: |
agentmodel | 1 | 7,243.91 | 7,346.89 | -1.40% | :white_check_mark: |
unet_fp16 | 2 | 57.79 | 57.56 | 0.39% | :white_check_mark: |
resnet50v1_fp16 | 1 | 910.81 | 917.25 | -0.70% | :white_check_mark: |
resnet50v1_int8 | 1 | 794.12 | 815.05 | -2.57% | :white_check_mark: |
bert_base_cased_fp16 | 64 | 1,053.46 | 1,053.37 | 0.01% | :white_check_mark: |
bert_large_uncased_fp16 | 32 | 301.66 | 301.70 | -0.02% | :white_check_mark: |
bert_large_fp16 | 1 | 158.70 | 158.88 | -0.12% | :white_check_mark: |
distilgpt2_fp16 | 16 | 1,858.05 | 1,860.49 | -0.13% | :white_check_mark: |
yolov5s | 1 | 475.81 | 481.01 | -1.08% | :white_check_mark: |
tinyllama | 1 | 32.99 | 33.01 | -0.06% | :white_check_mark: |
vicuna-fastchat | 1 | 157.29 | 159.19 | -1.19% | :white_check_mark: |
whisper-tiny-encoder | 1 | 348.02 | 347.33 | 0.20% | :white_check_mark: |
whisper-tiny-decoder | 1 | 395.52 | 396.69 | -0.30% | :white_check_mark: |
This build is not recommended to merge :red_circle:
:red_circle:bert_large_uncased_fp16: FAILED: MIGraphX is not within tolerance - check verbose output
For some background: where are we failing accuracy because of precision changes?
This is related to the fp16 inaccuracy with llamav2(see #2556). #2883 will use FP32 for large reduce_means, but it still isnt enough to get accurate results(or avoid nans). So this will use FP32 for the x^2/n
on the input and it will use FP32 for the rsqrt(mean + epsilon)
that follows the reduce_mean
.