Cuda memory while finetuning
I am trying to do SFT with a context length of 4096
the same things works perfectly with LLama. The model and cache loading is balanced across all gpus.
But while loading Qwen2 for finetuning it is uneven.
Can't even do batch size of 2 on 4 A10 gpus.
The model loads like above with a batch size of 1.
Please help.
and its normal peft finetuning not unsloth.
It is not normal and please provide steps to reproduce.
its just normal model loading Qwen2-7b-instruct-gptq-int8 with automodelforcasuallm torch 2.3.1 auto_gptq 0.7.1 flash-attn 2.5.8 peft 0.11.1 bitsandbytes 0.43.1 the model loading itself is not balanced behaves like above.
This issue has been automatically marked as inactive due to lack of recent activity. Should you believe it remains unresolved and warrants attention, kindly leave a comment on this thread.
what framework did you use? were you doing QLoRA?
yes qlora
hi,
Qwen2-7b-instruct-gptq-int8 with automodelforcasuallm
...
the model loading itself is not balanced behaves like above.
I was unable to reproduce this.
In [1]: from transformers import AutoModelForCausalLM
In [2]: import os
In [3]: os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3'
In [4]: model = AutoModelForCausalLM.from_pretrained("./Qwen2-7B-Instruct-GPTQ-Int8", torch_dtype="auto", device_map="auto")
CUDA extension not installed.
CUDA extension not installed.
/home/renxuancheng/miniconda3/envs/py311/lib/python3.11/site-packages/transformers/modeling_utils.py:4565: FutureWarning: `_is_quantized_training_enabled` is going to be deprecated in transformers 4.39.0. Please use `model.hf_quantizer.is_trainable` instead
warnings.warn(
Loading checkpoint shards: 100%|██████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.64it/s]
Some weights of the model checkpoint at ./Qwen2-7B-Instruct-GPTQ-Int8 were not used when initializing Qwen2ForCausalLM: ['model.layers.0.mlp.down_proj.bias', 'model.layers.0.mlp.gate_proj.bias', 'model.layers.0.mlp.up_proj.bias', 'model.layers.0.self_attn.o_proj.bias', 'model.layers.1.mlp.down_proj.bias', 'model.layers.1.mlp.gate_proj.bias', 'model.layers.1.mlp.up_proj.bias', 'model.layers.1.self_attn.o_proj.bias', 'model.layers.10.mlp.down_proj.bias', 'model.layers.10.mlp.gate_proj.bias', 'model.layers.10.mlp.up_proj.bias', 'model.layers.10.self_attn.o_proj.bias', 'model.layers.11.mlp.down_proj.bias', 'model.layers.11.mlp.gate_proj.bias', 'model.layers.11.mlp.up_proj.bias', 'model.layers.11.self_attn.o_proj.bias', 'model.layers.12.mlp.down_proj.bias', 'model.layers.12.mlp.gate_proj.bias', 'model.layers.12.mlp.up_proj.bias', 'model.layers.12.self_attn.o_proj.bias', 'model.layers.13.mlp.down_proj.bias', 'model.layers.13.mlp.gate_proj.bias', 'model.layers.13.mlp.up_proj.bias', 'model.layers.13.self_attn.o_proj.bias', 'model.layers.14.mlp.down_proj.bias', 'model.layers.14.mlp.gate_proj.bias', 'model.layers.14.mlp.up_proj.bias', 'model.layers.14.self_attn.o_proj.bias', 'model.layers.15.mlp.down_proj.bias', 'model.layers.15.mlp.gate_proj.bias', 'model.layers.15.mlp.up_proj.bias', 'model.layers.15.self_attn.o_proj.bias', 'model.layers.16.mlp.down_proj.bias', 'model.layers.16.mlp.gate_proj.bias', 'model.layers.16.mlp.up_proj.bias', 'model.layers.16.self_attn.o_proj.bias', 'model.layers.17.mlp.down_proj.bias', 'model.layers.17.mlp.gate_proj.bias', 'model.layers.17.mlp.up_proj.bias', 'model.layers.17.self_attn.o_proj.bias', 'model.layers.18.mlp.down_proj.bias', 'model.layers.18.mlp.gate_proj.bias', 'model.layers.18.mlp.up_proj.bias', 'model.layers.18.self_attn.o_proj.bias', 'model.layers.19.mlp.down_proj.bias', 'model.layers.19.mlp.gate_proj.bias', 'model.layers.19.mlp.up_proj.bias', 'model.layers.19.self_attn.o_proj.bias', 'model.layers.2.mlp.down_proj.bias', 'model.layers.2.mlp.gate_proj.bias', 'model.layers.2.mlp.up_proj.bias', 'model.layers.2.self_attn.o_proj.bias', 'model.layers.20.mlp.down_proj.bias', 'model.layers.20.mlp.gate_proj.bias', 'model.layers.20.mlp.up_proj.bias', 'model.layers.20.self_attn.o_proj.bias', 'model.layers.21.mlp.down_proj.bias', 'model.layers.21.mlp.gate_proj.bias', 'model.layers.21.mlp.up_proj.bias', 'model.layers.21.self_attn.o_proj.bias', 'model.layers.22.mlp.down_proj.bias', 'model.layers.22.mlp.gate_proj.bias', 'model.layers.22.mlp.up_proj.bias', 'model.layers.22.self_attn.o_proj.bias', 'model.layers.23.mlp.down_proj.bias', 'model.layers.23.mlp.gate_proj.bias', 'model.layers.23.mlp.up_proj.bias', 'model.layers.23.self_attn.o_proj.bias', 'model.layers.24.mlp.down_proj.bias', 'model.layers.24.mlp.gate_proj.bias', 'model.layers.24.mlp.up_proj.bias', 'model.layers.24.self_attn.o_proj.bias', 'model.layers.25.mlp.down_proj.bias', 'model.layers.25.mlp.gate_proj.bias', 'model.layers.25.mlp.up_proj.bias', 'model.layers.25.self_attn.o_proj.bias', 'model.layers.26.mlp.down_proj.bias', 'model.layers.26.mlp.gate_proj.bias', 'model.layers.26.mlp.up_proj.bias', 'model.layers.26.self_attn.o_proj.bias', 'model.layers.27.mlp.down_proj.bias', 'model.layers.27.mlp.gate_proj.bias', 'model.layers.27.mlp.up_proj.bias', 'model.layers.27.self_attn.o_proj.bias', 'model.layers.3.mlp.down_proj.bias', 'model.layers.3.mlp.gate_proj.bias', 'model.layers.3.mlp.up_proj.bias', 'model.layers.3.self_attn.o_proj.bias', 'model.layers.4.mlp.down_proj.bias', 'model.layers.4.mlp.gate_proj.bias', 'model.layers.4.mlp.up_proj.bias', 'model.layers.4.self_attn.o_proj.bias', 'model.layers.5.mlp.down_proj.bias', 'model.layers.5.mlp.gate_proj.bias', 'model.layers.5.mlp.up_proj.bias', 'model.layers.5.self_attn.o_proj.bias', 'model.layers.6.mlp.down_proj.bias', 'model.layers.6.mlp.gate_proj.bias', 'model.layers.6.mlp.up_proj.bias', 'model.layers.6.self_attn.o_proj.bias', 'model.layers.7.mlp.down_proj.bias', 'model.layers.7.mlp.gate_proj.bias', 'model.layers.7.mlp.up_proj.bias', 'model.layers.7.self_attn.o_proj.bias', 'model.layers.8.mlp.down_proj.bias', 'model.layers.8.mlp.gate_proj.bias', 'model.layers.8.mlp.up_proj.bias', 'model.layers.8.self_attn.o_proj.bias', 'model.layers.9.mlp.down_proj.bias', 'model.layers.9.mlp.gate_proj.bias', 'model.layers.9.mlp.up_proj.bias', 'model.layers.9.self_attn.o_proj.bias']
- This IS expected if you are initializing Qwen2ForCausalLM from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing Qwen2ForCausalLM from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.161.08 Driver Version: 535.161.08 CUDA Version: 12.2 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA A10 On | 00000000:69:00.0 Off | 0 |
| 0% 34C P0 54W / 150W | 1527MiB / 23028MiB | 0% Default |
| | | N/A |
+-----------------------------------------+----------------------+----------------------+
| 1 NVIDIA A10 On | 00000000:6A:00.0 Off | 0 |
| 0% 34C P0 54W / 150W | 2721MiB / 23028MiB | 0% Default |
| | | N/A |
+-----------------------------------------+----------------------+----------------------+
| 2 NVIDIA A10 On | 00000000:71:00.0 Off | 0 |
| 0% 34C P0 55W / 150W | 2721MiB / 23028MiB | 0% Default |
| | | N/A |
+-----------------------------------------+----------------------+----------------------+
| 3 NVIDIA A10 On | 00000000:72:00.0 Off | 0 |
| 0% 33C P0 54W / 150W | 3017MiB / 23028MiB | 0% Default |
| | | N/A |
+-----------------------------------------+----------------------+----------------------+
If possible, please share the finetuning script you have used or an MWE.
This issue has been automatically marked as inactive due to lack of recent activity. Should you believe it remains unresolved and warrants attention, kindly leave a comment on this thread.
This issue has been automatically locked since there has not been any recent activity after it was closed. Please open a new issue for related bugs.