PyTorch-Raspberry-Pi-64-OS icon indicating copy to clipboard operation
PyTorch-Raspberry-Pi-64-OS copied to clipboard

PyTorch installation wheels for Raspberry Pi 64 OS

PyTorch wheels for Raspberry Pi 4

output image

Find your operating system and Pytorch version in the table below. Follow the instructions in the provided guide.
There is no Raspberry Pi 32-bit wheel available due to unsupported libraries.
The Jetson Nano wheels supports CUDA 10.2, cuDNN 8.0 and NEON. They can also be used on the (AGX) Xavier.


Wheel: the installation wheel torch-version-cpxx-cpxx-linux_aarch64.whl (xx is the used python version)
Vision: the accompanying torchvision.
LibTorch: the C++ API for those who like to program. (The aarch64 version of libtorch-cxx11-abi-shared-with-deps-1.10.1+cpu.zip)
Guide: link to the installation tutorial.

Roadmap.

Operating system PyTorch 1.12.0 PyTorch 1.11.0 PyTorch 1.10.0 PyTorch 1.9.0 PyTorch 1.8.0 PyTorch 1.7.0
Raspberry Pi 64-bit Bullseye
(Python 3.9)
Wheel
Vision
LibTorch
Guide
Wheel
Vision
LibTorch
Guide
Wheel
Vision
LibTorch
Guide
Wheel
Vision
LibTorch
Guide
Wheel
Vision
LibTorch
Guide
Raspberry Pi 64-bit Buster
(Python 3.7)
Wheel
Vision
LibTorch
Guide
Wheel
Vision
LibTorch
Guide
Wheel
Vision
LibTorch
Guide
Wheel
Vision
LibTorch
Guide
Wheel
Vision
LibTorch
Guide
Wheel
Vision
LibTorch
Guide
Raspberry Pi Ubuntu 18.04
(Python 3.6)
Wheel
Vision
LibTorch
Guide
Wheel
Vision
LibTorch
Guide
Raspberry Pi Ubuntu 20.04
(Python 3.8)
Wheel
Vision
LibTorch
Guide
Wheel
Vision
LibTorch
Guide
Jetson Nano JetPack 4.6
(Python 3.6)
Wheel
Vision
LibTorch
Guide
Wheel
Vision
LibTorch
Guide
Wheel
Vision
Guide
Wheel
Vision
Guide
Jetson Nano Ubuntu 20.04
(Python 3.8)
Wheel
Vision
LibTorch
Guide
Wheel
Vision
LibTorch
Guide

We compiled all wheels with the clang compiler to prevent issues with the ARM NEON registers and the GNU compiler.
For instance #61110 and #65673.

output image

output image

:heavy_exclamation_mark: C++ programmers please note

You should also use the clang compiler if you want to compile C++ code yourself.
The GNU GCC compiler will give you 'no expression errors'.

# set clang compiler at the command line
$ export CC=clang
$ export CXX=clang++

Don't worry if you plan to use Python. It only applies to C++ users.


output image Find PyTorch and TorchVision with other frameworks and deep-learning examples on our SD-image


paypal