gt-linalg icon indicating copy to clipboard operation
gt-linalg copied to clipboard

Interactive Linear Algebra, free online textbook at Georgia Tech

Results 100 gt-linalg issues
Sort by recently updated
recently updated
newest added

In reference to version 224734d7be7ff0c4a8adb3a206356ea122112f33 "Page C is the most important, with a rank of **0.558,** and page B is the least important, with a rank of 0.1752." Page C...

In reference to version 224734d7be7ff0c4a8adb3a206356ea122112f33 Is this copyright free, can we make a zim out of it?

In reference to version 224734d7be7ff0c4a8adb3a206356ea122112f33: "The reader may have observed a relationship between the column space and the null space of a matrix. In this , the column space and...

In reference to version 224734d7be7ff0c4a8adb3a206356ea122112f33 shouldn't there be a reference to matrix symmetry?

In reference to version 224734d7be7ff0c4a8adb3a206356ea122112f33 ![image](https://user-images.githubusercontent.com/72779254/115134140-7c21e500-9fc2-11eb-86db-3a97fd9c5ee7.png) I think the subscript should be n instead of m in "matrix with columns..."

In reference to version 224734d7be7ff0c4a8adb3a206356ea122112f33 From Art Chen: In Non-Example(A non-orthogonal basis), right after we show that x_{R^2} \neq x, we then say that they are equal.

In reference to version 224734d7be7ff0c4a8adb3a206356ea122112f33 From Art Chen Just wondering, on your "Three vectors in R4" example for the Gram-Schmidt Section, for u3 evaluation, I got 0/4 not 0/24 for...

In reference to version 224734d7be7ff0c4a8adb3a206356ea122112f33 From Art Chen In the "Recipe: Compute an orthogonal decomposition" look at item "0" in the list following the paragraph. On the first line following...

In reference to version 224734d7be7ff0c4a8adb3a206356ea122112f33 From Art Chen: Following “Recipe: Compute an orthogonal decomposition, Example (Projection onto another plane in 𝑹𝟑), solution Method 1 and hence a basis for V...

In reference to version 224734d7be7ff0c4a8adb3a206356ea122112f33 In the proof of the facts about orthogonal complements, Art Chen suggested Therefore, all coefficients c_i are equal to zero --> Therefore, all coefficients c_i...