PointTransformerV2
PointTransformerV2 copied to clipboard
PTv1, shapenet, part segmentation
Hi, Thanks to your contributes. I want to train PTv1, dataset=shapenet, for part segmentation. Could you give me a running script for this please? Thank you :)
Sure! The following ShapeNet config for PTv1 was from an older version of our codebase, and you need to migrate it to the released codebase. Also, I did not tune PTv1 on the ShapeNet part segmentation dataset, and you might need to tune the augmentation and scheduler setting to achieve better performance.
_base_ = [
'../_base_/datasets/shapenet_part.py',
'../_base_/schedulers/multi-step_sgd.py',
'../_base_/tests/part_segmentation.py',
'../_base_/default_runtime.py'
]
batch_size = 32
batch_size_val = 8
metric = "cat_mIoU"
# enable_amp = True
train_gpu = [2,3]
epochs = 100
start_epoch = 0
optimizer = dict(type='SGD', lr=0.5, momentum=0.9, weight_decay=0.0001, nesterov=True)
scheduler = dict(type='MultiStepLR', milestones=[epochs * 0.6, epochs * 0.8], steps_per_epoch=1, gamma=0.1)
model = dict(
type='PointTransformerV2-PartSeg50',
num_shape_classes=16,
in_channels=6,
num_classes=50
)
# dataset settings
dataset_type = "ShapeNetPartDataset"
data_root = "data/shapenetcore_partanno_segmentation_benchmark_v0_normal"
cache_data = False
names = ["Airplane_{}".format(i) for i in range(4)] + \
["Bag_{}".format(i) for i in range(2)] + \
["Cap_{}".format(i) for i in range(2)] + \
["Car_{}".format(i) for i in range(4)] + \
["Chair_{}".format(i) for i in range(4)] + \
["Earphone_{}".format(i) for i in range(3)] + \
["Guitar_{}".format(i) for i in range(3)] + \
["Knife_{}".format(i) for i in range(2)] + \
["Lamp_{}".format(i) for i in range(4)] + \
["Laptop_{}".format(i) for i in range(2)] + \
["Motorbike_{}".format(i) for i in range(6)] + \
["Mug_{}".format(i) for i in range(2)] + \
["Pistol_{}".format(i) for i in range(3)] + \
["Rocket_{}".format(i) for i in range(3)] + \
["Skateboard_{}".format(i) for i in range(3)] + \
["Table_{}".format(i) for i in range(3)]
data = dict(
num_classes=50,
ignore_label=-1, # dummy ignore
names=names,
train=dict(
type=dataset_type,
split=["train", "val"],
data_root=data_root,
transform=[
dict(type="NormalizeCoord"),
# dict(type="CenterShift", apply_z=True),
# dict(type="RandomRotate", angle=[-1, 1], axis='z', center=[0, 0, 0], p=0.5),
# dict(type="RandomRotate", angle=[-1 / 24, 1 / 24], axis='x', p=0.5),
# dict(type="RandomRotate", angle=[-1 / 24, 1 / 24], axis='y', p=0.5),
# dict(type="RandomScale", scale=[0.9, 1.1]),
# dict(type="RandomFlip", p=0.5),
# dict(type="RandomJitter", sigma=0.005, clip=0.02),
# dict(type="RandomShift", shift=[0.2, 0.2, 0.2]),
# dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]),
# dict(type="Voxelize", voxel_size=0.01, hash_type='fnv', mode='train'),
# dict(type="SphereCrop", point_max=2500, mode='random'),
dict(type="ShufflePoint"),
dict(type="ToTensor"),
dict(type="Collect", keys=("coord", "cls_token", "label"), feat_keys=("coord", "norm"))
],
loop=2,
test_mode=False,
),
val=dict(
type=dataset_type,
split="test",
data_root=data_root,
transform=[
dict(type="NormalizeCoord"),
dict(type="ToTensor"),
dict(type="Collect", keys=("coord", "cls_token", "label"), feat_keys=("coord", "norm"))
],
loop=1,
test_mode=False,
),
test=dict(
type=dataset_type,
split="test",
data_root=data_root,
transform=[
dict(type="NormalizeCoord"),
# dict(type="CenterShift", apply_z=True),
],
loop=1,
test_mode=True,
test_cfg=dict(
post_transform=[
dict(type="ToTensor"),
dict(type="Collect", keys=("coord", "cls_token"), feat_keys=("coord", "norm"))
],
aug_transform=[
[dict(type="RandomShift2", shift=((0, 0), (0, 0), (0, 0)))]
]
)
),
)
criteria = [
dict(type="CrossEntropyLoss",
loss_weight=1.0,
ignore_index=data["ignore_label"])
]
Thank you @Gofinge !! I'm not sure I did it right, I revised [/config/base/datasets/shapenet_part.py ] to the one you gave me.
And, I want to know the command by [sh scripts/train.sh ...] or [python tools/train.py ...] I tried many different ways, but I failed. TT Could you give me some advice..?
Hi, /config/base/datasets/shapenet_part.py
is just a base config, not a task config. It doesn't contain the necessary components to start a task. You can modify it from a task config located in the dataset folder. For example, you can copy the ptv1 config in the ScanNet folder to the ShapeNetPart folder (mkdir configs/shapenet_part
), then follow the old config which I provided to replace the config in the copied one.
I love people who have achieved so much and helped others, and the world will be wonderful because of you.