SRFBN_CVPR19
SRFBN_CVPR19 copied to clipboard
problem about reproducting RCAN using your project
Hi, @Paper99 I am try to reproduct RCAN based on your code. my code:
import torch
from torch import nn as nn
import math
# from basicsr.models.archs.arch_util import Upsample, make_layer
def make_layer(basic_block, num_basic_block, **kwarg):
"""Make layers by stacking the same blocks.
Args:
basic_block (nn.module): nn.module class for basic block.
num_basic_block (int): number of blocks.
Returns:
nn.Sequential: Stacked blocks in nn.Sequential.
"""
layers = []
for _ in range(num_basic_block):
layers.append(basic_block(**kwarg))
return nn.Sequential(*layers)
class Upsample(nn.Sequential):
"""Upsample module.
Args:
scale (int): Scale factor. Supported scales: 2^n and 3.
num_feat (int): Channel number of intermediate features.
"""
def __init__(self, scale, num_feat):
m = []
if (scale & (scale - 1)) == 0: # scale = 2^n
for _ in range(int(math.log(scale, 2))):
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
m.append(nn.PixelShuffle(2))
elif scale == 3:
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
m.append(nn.PixelShuffle(3))
else:
raise ValueError(f'scale {scale} is not supported. '
'Supported scales: 2^n and 3.')
super(Upsample, self).__init__(*m)
class ChannelAttention(nn.Module):
"""Channel attention used in RCAN.
Args:
num_feat (int): Channel number of intermediate features.
squeeze_factor (int): Channel squeeze factor. Default: 16.
"""
def __init__(self, num_feat, squeeze_factor=16):
super(ChannelAttention, self).__init__()
self.attention = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(num_feat, num_feat // squeeze_factor, 1, padding=0),
nn.ReLU(inplace=True),
nn.Conv2d(num_feat // squeeze_factor, num_feat, 1, padding=0),
nn.Sigmoid())
def forward(self, x):
y = self.attention(x)
return x * y
class RCAB(nn.Module):
"""Residual Channel Attention Block (RCAB) used in RCAN.
Args:
num_feat (int): Channel number of intermediate features.
squeeze_factor (int): Channel squeeze factor. Default: 16.
res_scale (float): Scale the residual. Default: 1.
"""
def __init__(self, num_feat, squeeze_factor=16, res_scale=1):
super(RCAB, self).__init__()
self.res_scale = res_scale
self.rcab = nn.Sequential(
nn.Conv2d(num_feat, num_feat, 3, 1, 1), nn.ReLU(True),
nn.Conv2d(num_feat, num_feat, 3, 1, 1),
ChannelAttention(num_feat, squeeze_factor))
def forward(self, x):
res = self.rcab(x) * self.res_scale
return res + x
class ResidualGroup(nn.Module):
"""Residual Group of RCAB.
Args:
num_feat (int): Channel number of intermediate features.
num_block (int): Block number in the body network.
squeeze_factor (int): Channel squeeze factor. Default: 16.
res_scale (float): Scale the residual. Default: 1.
"""
def __init__(self, num_feat, num_block, squeeze_factor=16, res_scale=1):
super(ResidualGroup, self).__init__()
self.residual_group = make_layer(
RCAB,
num_block,
num_feat=num_feat,
squeeze_factor=squeeze_factor,
res_scale=res_scale)
self.conv = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
def forward(self, x):
res = self.conv(self.residual_group(x))
return res + x
class RCAN(nn.Module):
"""Residual Channel Attention Networks.
Paper: Image Super-Resolution Using Very Deep Residual Channel Attention
Networks
Ref git repo: https://github.com/yulunzhang/RCAN.
Args:
num_in_ch (int): Channel number of inputs.
num_out_ch (int): Channel number of outputs.
num_feat (int): Channel number of intermediate features.
Default: 64.
num_group (int): Number of ResidualGroup. Default: 10.
num_block (int): Number of RCAB in ResidualGroup. Default: 16.
squeeze_factor (int): Channel squeeze factor. Default: 16.
upscale (int): Upsampling factor. Support 2^n and 3.
Default: 4.
res_scale (float): Used to scale the residual in residual block.
Default: 1.
img_range (float): Image range. Default: 255.
rgb_mean (tuple[float]): Image mean in RGB orders.
Default: (0.4488, 0.4371, 0.4040), calculated from DIV2K dataset.
"""
def __init__(self,
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_group=10,
num_block=16,
squeeze_factor=16,
upscale=2,
res_scale=1,
img_range=255.,
rgb_mean=(0.4488, 0.4371, 0.4040)):
super(RCAN, self).__init__()
self.img_range = img_range
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
self.body = make_layer(
ResidualGroup,
num_group,
num_feat=num_feat,
num_block=num_block,
squeeze_factor=squeeze_factor,
res_scale=res_scale)
self.conv_after_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.upsample = Upsample(upscale, num_feat)
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
def forward(self, x):
# print(x.shape)
self.mean = self.mean.type_as(x)
x = (x - self.mean) * self.img_range
x = self.conv_first(x)
res = self.conv_after_body(self.body(x))
res += x
x = self.conv_last(self.upsample(res))
x = x / self.img_range + self.mean
# print(x.shape)
# exit()
return x
this code can run, but the loss is very high(about 1e30). I feel so confused about this, can you give me suggestions? my train.json:
{
"mode": "sr",
"use_cl": false,
// "use_cl": true,
"gpu_ids": [1],
"scale": 2,
"is_train": true,
"use_chop": true,
"rgb_range": 255,
"self_ensemble": false,
"save_image": false,
"datasets": {
"train": {
"mode": "LRHR",
"dataroot_HR": "/home/wangsen/ws/dataset/DIV2K/Augment/DIV2K_train_HR_aug/x2",
"dataroot_LR": "/home/wangsen/ws/dataset/DIV2K/Augment/DIV2K_train_LR_aug/x2",
"data_type": "npy",
"n_workers": 8,
"batch_size": 16,
"LR_size": 48,
"use_flip": true,
"use_rot": true,
"noise": "."
},
"val": {
"mode": "LRHR",
"dataroot_HR": "./results/HR/Set5/x2",
"dataroot_LR": "./results/LR/LRBI/Set5/x2",
"data_type": "img"
}
},
"networks": {
"which_model": "RCAN",
"num_features": 64,
"in_channels": 3,
"out_channels": 3,
"res_scale": 1,
"num_resgroups":10,
"num_resblocks":20,
"num_reduction":16
},
"solver": {
"type": "ADAM",
"learning_rate": 0.0002,
"weight_decay": 0,
"lr_scheme": "MultiStepLR",
"lr_steps": [200, 400, 600, 800],
"lr_gamma": 0.5,
"loss_type": "l1",
"manual_seed": 0,
"num_epochs": 1000,
"skip_threshold": 3,
"split_batch": 1,
"save_ckp_step": 100,
"save_vis_step": 1,
"pretrain": null,
// "pretrain": "resume",
"pretrained_path": "./experiments/RCAN_in3f64_x4/epochs/last_ckp.pth",
"cl_weights": [1.0, 1.0, 1.0, 1.0]
}
}