Serving
Serving copied to clipboard
A flexible, high-performance carrier for machine learning models(『飞桨』服务化部署框架)
请问这个项目还在维护吗?什么时候能支持cuda11.7 cuda11.8 cuda12.0
设置超时时间后,会到这部分代码  不设置超时时间是没问题的 
paddle-serving-app 0.9.0 paddle-serving-client 0.9.0 paddle-serving-server-gpu 0.9.0.post112 paddlepaddle-gpu 2.6.0.post112 Traceback (most recent call last): File "/mnt/storage/anaconda3/envs/paddle/lib/python3.9/runpy.py", line 197, in _run_module_as_main return _run_code(code, main_globals, None, File "/mnt/storage/anaconda3/envs/paddle/lib/python3.9/runpy.py", line 87, in _run_code exec(code,...
我自定了OP,c++ 服务的启动方式是 ``` python3 -m paddle_serving_server.serve --model serving_model --port 9393 ``` 我如何在OP中Debug C++ 代码? 求教
  有没有大佬知道这是哪儿出错了
 
C++编译报错
 使用Docker 0.9.0-devel镜像编译,执行到这一步骤时报错 package google.golang.org/grpc is not a main package. 
## 问题: ### Q1: 执行如下代码时报错: ```bash export SERVING_BIN=/usr/local/serving_bin/serving python -m paddle_serving_server.serve \ --model ./serving_server \ --thread 8 --port 10010 \ --gpu_ids 0 ``` 错误信息: ``` bash Error Message Summary: ----------------------...
如题,使用 pipline 的方式部署了 cascade 服务,使用 http 接口进行图像预测,使用多线程方式调接口,分析了多张图像之后出现段错误。 # 测试环境 - CUDA 11.2 - 显卡:RTX 3090 - python 3.7.0 - PaddlePaddle 2.1.0.post112 - paddle-serving-server-gpu 0.6.0.post11 - paddle_serving_app 0.6.0 # web_service.py ```python...
``` 环境 CUDA 11.7 cudnn 8.4.1 显卡:GTX 1070 python 3.8.13 PaddlePaddle 2.4.1.post117 paddle-serving-server-gpu 0.9.0 paddle_serving_app 0.9.0 用paddleX训练的PPYOLOv2模型,通过python -m paddle_serving_client.convert --dirname --model_filename --params_filename --serving_server serving_server --serving_client serving_client命令将inference模型转为了server模型。 发现一个问题,同一个模型用不同的方式部署后,会出现lod报错。具体如下: 1、当我用pipeline方式部署,fetch_dict中没有fetch_name.lod这个键,fetch_dict: {'save_infer_model/scale_0.tmp_1': array([[...