PaddleOCR
PaddleOCR copied to clipboard
用下载的模型测试 totaltext指标不对额,测试并没有达到实验公布的指标,直接按步骤跑的,
请提供下述完整信息以便快速定位问题/Please provide the following information to quickly locate the problem
- 系统环境/System Environment: ubantu 18
- 版本号/Version:Paddle: PaddleOCR: 问题相关组件/Related components:
- 运行指令/Command Code: python3 tools/eval.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.checkpoints="./pretrain_models/en_server_pgnetA/best_accuracy"
- 完整报错/Complete Error Message:
[2022/10/23 12:18:34] ppocr INFO: total_num_gt:2543 [2022/10/23 12:18:34] ppocr INFO: total_num_det:2273 [2022/10/23 12:18:34] ppocr INFO: global_accumulative_recall:1884.7999999999959 [2022/10/23 12:18:34] ppocr INFO: hit_str_count:1294 [2022/10/23 12:18:34] ppocr INFO: recall:0.7411718442784097 [2022/10/23 12:18:34] ppocr INFO: precision:0.8337879454465452 [2022/10/23 12:18:34] ppocr INFO: f_score:0.7847567325787329 [2022/10/23 12:18:34] ppocr INFO: seqerr:0.3134550084889628 [2022/10/23 12:18:34] ppocr INFO: recall_e2e:0.5088478175383405 [2022/10/23 12:18:34] ppocr INFO: precision_e2e:0.5692916849978003 [2022/10/23 12:18:34] ppocr INFO: f_score_e2e:0.537375415282392 [2022/10/23 12:18:34] ppocr INFO: fps:27.01980638883
i download the test model from datalink you offer
yours:
Ours | 87.03 | 82.48 | 84.69 | 61.71 | 58.43 | 60.03 | 48.73 (size=768) | download link |
---|
Ours 87.03 82.48 84.69 61.71 58.43 60.03 48.73 (size=768) download link
@huangjun12 @sdcb @littletomatodonkey
readme中公开的论文指标需要用B模式的metric计算方式,A模式的计算方式的标签格式和PPOCR格式相同,但是效果差一些
采用B模式精度评估方式:
下载ground truth :
wget https://paddleocr.bj.bcebos.com/dataset/Groundtruth.tar
修改metric部分参数,
Metric:
name: E2EMetric
mode: B # two ways for eval, A: label from txt, B: label from gt_mat
gt_mat_dir: ./train_data/Groundtruth/ # the dir of gt_mat
character_dict_path: ppocr/utils/ic15_dict.txt
main_indicator: f_score_e2e
最后评估出来的指标:
[2022/09/15 02:35:36] ppocr INFO: load pretrain successful from ./en_server_pgnetA/best_accuracy
eval model:: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 300/300 [01:15<00:00, 3.97it/s]
[2022/09/15 02:36:52] ppocr INFO: metric eval ***************
[2022/09/15 02:36:52] ppocr INFO: total_num_gt:2204
[2022/09/15 02:36:52] ppocr INFO: total_num_det:2070
[2022/09/15 02:36:52] ppocr INFO: global_accumulative_recall:1818.3999999999967
[2022/09/15 02:36:52] ppocr INFO: hit_str_count:1267
[2022/09/15 02:36:52] ppocr INFO: recall:0.8250453720508152
[2022/09/15 02:36:52] ppocr INFO: precision:0.8749758454106266
[2022/09/15 02:36:52] ppocr INFO: f_score:0.8492773672439888
[2022/09/15 02:36:52] ppocr INFO: seqerr:0.30323361196656273
[2022/09/15 02:36:52] ppocr INFO: recall_e2e:0.5748638838475499
[2022/09/15 02:36:52] ppocr INFO: precision_e2e:0.6120772946859904
[2022/09/15 02:36:52] ppocr INFO: f_score_e2e:0.5928872250818905
[2022/09/15 02:36:52] ppocr INFO: fps:20.85154714822483