PaddleOCR
PaddleOCR copied to clipboard
No matter what i do i got acc: 0.000000
This is my config.yml
Global:
debug: false
use_gpu: true
epoch_num: 500
log_smooth_window: 20
print_batch_step: 5
save_model_dir: ./output/v3_arabic_mobile
save_epoch_step: 1
eval_batch_step: [0, 100]
cal_metric_during_train: true
pretrained_model:
checkpoints: arabic_PP-OCRv3_rec_train/best_accuracy
save_inference_dir:
use_visualdl: false
infer_img:
character_dict_path: ppocr/utils/dict/arabic_dict.txt
max_text_length: &max_text_length 25
infer_mode: false
use_space_char: true
distributed: true
save_res_path: ./output/rec/predicts_ppocrv3_arabic.txt
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
name: Cosine
learning_rate: 0.001
warmup_epoch: 5
regularizer:
name: L2
factor: 3.0e-05
Architecture:
model_type: rec
algorithm: SVTR
Transform:
Backbone:
name: MobileNetV1Enhance
scale: 0.5
last_conv_stride: [1, 2]
last_pool_type: avg
Head:
name: MultiHead
head_list:
- CTCHead:
Neck:
name: svtr
dims: 64
depth: 2
hidden_dims: 120
use_guide: True
Head:
fc_decay: 0.00001
- SARHead:
enc_dim: 512
max_text_length: *max_text_length
Loss:
name: MultiLoss
loss_config_list:
- CTCLoss:
- SARLoss:
PostProcess:
name: CTCLabelDecode
Metric:
name: RecMetric
main_indicator: acc
ignore_space: False
Train:
dataset:
name: SimpleDataSet
data_dir: ./
ext_op_transform_idx: 1
label_file_list: ./train_data/rec_gt_train.txt
transforms:
- DecodeImage:
img_mode: BGR
channel_first: false
- RecConAug:
prob: 0.5
ext_data_num: 2
image_shape: [48, 320, 3]
- RecAug:
- MultiLabelEncode:
- RecResizeImg:
image_shape: [3, 48, 320]
- KeepKeys:
keep_keys:
- image
- label_ctc
- label_sar
- length
- valid_ratio
loader:
shuffle: true
batch_size_per_card: 8
drop_last: true
num_workers: 4
Eval:
dataset:
name: SimpleDataSet
data_dir: ./
label_file_list: ./train_data/rec_gt_test.txt
transforms:
- DecodeImage:
img_mode: BGR
channel_first: false
- MultiLabelEncode:
- RecResizeImg:
image_shape: [3, 48, 320]
- KeepKeys:
keep_keys:
- image
- label_ctc
- label_sar
- length
- valid_ratio
loader:
shuffle: false
drop_last: false
batch_size_per_card: 8
num_workers: 4
This is smaple from the data:
train is 800 images and test is 200 images. I'm getting 0 acc, i even added the same images in train and test to overfit and see the accuracy increase and it gave me 0 acc also
[2022/10/21 10:14:42] ppocr INFO: Backbone :
[2022/10/21 10:14:42] ppocr INFO: last_conv_stride : [1, 2]
[2022/10/21 10:14:42] ppocr INFO: last_pool_type : avg
[2022/10/21 10:14:42] ppocr INFO: name : MobileNetV1Enhance
[2022/10/21 10:14:42] ppocr INFO: scale : 0.5
[2022/10/21 10:14:42] ppocr INFO: Head :
[2022/10/21 10:14:42] ppocr INFO: head_list :
[2022/10/21 10:14:42] ppocr INFO: CTCHead :
[2022/10/21 10:14:42] ppocr INFO: Head :
[2022/10/21 10:14:42] ppocr INFO: fc_decay : 1e-05
[2022/10/21 10:14:42] ppocr INFO: Neck :
[2022/10/21 10:14:42] ppocr INFO: depth : 2
[2022/10/21 10:14:42] ppocr INFO: dims : 64
[2022/10/21 10:14:42] ppocr INFO: hidden_dims : 120
[2022/10/21 10:14:42] ppocr INFO: name : svtr
[2022/10/21 10:14:42] ppocr INFO: use_guide : True
[2022/10/21 10:14:42] ppocr INFO: SARHead :
[2022/10/21 10:14:42] ppocr INFO: enc_dim : 512
[2022/10/21 10:14:42] ppocr INFO: max_text_length : 100
[2022/10/21 10:14:42] ppocr INFO: name : MultiHead
[2022/10/21 10:14:42] ppocr INFO: Transform : None
[2022/10/21 10:14:42] ppocr INFO: algorithm : SVTR
[2022/10/21 10:14:42] ppocr INFO: model_type : rec
[2022/10/21 10:14:42] ppocr INFO: Eval :
[2022/10/21 10:14:42] ppocr INFO: dataset :
[2022/10/21 10:14:42] ppocr INFO: data_dir : ./train_data
[2022/10/21 10:14:42] ppocr INFO: label_file_list : ./train_data/rec_gt_test.txt
[2022/10/21 10:14:42] ppocr INFO: name : SimpleDataSet
[2022/10/21 10:14:42] ppocr INFO: transforms :
[2022/10/21 10:14:42] ppocr INFO: DecodeImage :
[2022/10/21 10:14:42] ppocr INFO: channel_first : False
[2022/10/21 10:14:42] ppocr INFO: img_mode : BGR
[2022/10/21 10:14:42] ppocr INFO: MultiLabelEncode : None
[2022/10/21 10:14:42] ppocr INFO: RecResizeImg :
[2022/10/21 10:14:42] ppocr INFO: image_shape : [3, 48, 320]
[2022/10/21 10:14:42] ppocr INFO: KeepKeys :
[2022/10/21 10:14:42] ppocr INFO: keep_keys : ['image', 'label_ctc', 'label_sar', 'length', 'valid_ratio']
[2022/10/21 10:14:42] ppocr INFO: loader :
[2022/10/21 10:14:42] ppocr INFO: batch_size_per_card : 2
[2022/10/21 10:14:42] ppocr INFO: drop_last : False
[2022/10/21 10:14:42] ppocr INFO: num_workers : 4
[2022/10/21 10:14:42] ppocr INFO: shuffle : False
[2022/10/21 10:14:42] ppocr INFO: Global :
[2022/10/21 10:14:42] ppocr INFO: cal_metric_during_train : True
[2022/10/21 10:14:42] ppocr INFO: character_dict_path : ppocr/utils/dict/arabic_dict.txt
[2022/10/21 10:14:42] ppocr INFO: checkpoints : arabic_PP-OCRv3_rec_train/best_accuracy
[2022/10/21 10:14:42] ppocr INFO: debug : True
[2022/10/21 10:14:42] ppocr INFO: distributed : False
[2022/10/21 10:14:42] ppocr INFO: epoch_num : 200
[2022/10/21 10:14:42] ppocr INFO: eval_batch_step : [0, 100]
[2022/10/21 10:14:42] ppocr INFO: infer_img : None
[2022/10/21 10:14:42] ppocr INFO: infer_mode : False
[2022/10/21 10:14:42] ppocr INFO: log_smooth_window : 20
[2022/10/21 10:14:42] ppocr INFO: max_text_length : 100
[2022/10/21 10:14:42] ppocr INFO: pretrained_model : None
[2022/10/21 10:14:42] ppocr INFO: print_batch_step : 1
[2022/10/21 10:14:42] ppocr INFO: save_epoch_step : 1
[2022/10/21 10:14:42] ppocr INFO: save_inference_dir : None
[2022/10/21 10:14:42] ppocr INFO: save_model_dir : ./output/v3_arabic_mobile
[2022/10/21 10:14:42] ppocr INFO: save_res_path : ./output/rec/predicts_ppocrv3_arabic.txt
[2022/10/21 10:14:42] ppocr INFO: use_gpu : True
[2022/10/21 10:14:42] ppocr INFO: use_space_char : True
[2022/10/21 10:14:42] ppocr INFO: use_visualdl : False
[2022/10/21 10:14:42] ppocr INFO: Loss :
[2022/10/21 10:14:42] ppocr INFO: loss_config_list :
[2022/10/21 10:14:42] ppocr INFO: CTCLoss : None
[2022/10/21 10:14:42] ppocr INFO: SARLoss : None
[2022/10/21 10:14:42] ppocr INFO: name : MultiLoss
[2022/10/21 10:14:42] ppocr INFO: Metric :
[2022/10/21 10:14:42] ppocr INFO: ignore_space : False
[2022/10/21 10:14:42] ppocr INFO: main_indicator : acc
[2022/10/21 10:14:42] ppocr INFO: name : RecMetric
[2022/10/21 10:14:42] ppocr INFO: Optimizer :
[2022/10/21 10:14:42] ppocr INFO: beta1 : 0.9
[2022/10/21 10:14:42] ppocr INFO: beta2 : 0.999
[2022/10/21 10:14:42] ppocr INFO: lr :
[2022/10/21 10:14:42] ppocr INFO: learning_rate : 0.001
[2022/10/21 10:14:42] ppocr INFO: name : Cosine
[2022/10/21 10:14:42] ppocr INFO: warmup_epoch : 5
[2022/10/21 10:14:42] ppocr INFO: name : Adam
[2022/10/21 10:14:42] ppocr INFO: regularizer :
[2022/10/21 10:14:42] ppocr INFO: factor : 3e-05
[2022/10/21 10:14:42] ppocr INFO: name : L2
[2022/10/21 10:14:42] ppocr INFO: PostProcess :
[2022/10/21 10:14:42] ppocr INFO: name : CTCLabelDecode
[2022/10/21 10:14:42] ppocr INFO: Train :
[2022/10/21 10:14:42] ppocr INFO: dataset :
[2022/10/21 10:14:42] ppocr INFO: data_dir : ./train_data
[2022/10/21 10:14:42] ppocr INFO: ext_op_transform_idx : 1
[2022/10/21 10:14:42] ppocr INFO: label_file_list : ./train_data/rec_gt_train.txt
[2022/10/21 10:14:42] ppocr INFO: name : SimpleDataSet
[2022/10/21 10:14:42] ppocr INFO: transforms :
[2022/10/21 10:14:42] ppocr INFO: DecodeImage :
[2022/10/21 10:14:42] ppocr INFO: channel_first : False
[2022/10/21 10:14:42] ppocr INFO: img_mode : BGR
[2022/10/21 10:14:42] ppocr INFO: RecConAug :
[2022/10/21 10:14:42] ppocr INFO: ext_data_num : 2
[2022/10/21 10:14:42] ppocr INFO: image_shape : [48, 320, 3]
[2022/10/21 10:14:42] ppocr INFO: prob : 0.5
[2022/10/21 10:14:42] ppocr INFO: RecAug : None
[2022/10/21 10:14:42] ppocr INFO: MultiLabelEncode : None
[2022/10/21 10:14:42] ppocr INFO: RecResizeImg :
[2022/10/21 10:14:42] ppocr INFO: image_shape : [3, 48, 320]
[2022/10/21 10:14:42] ppocr INFO: KeepKeys :
[2022/10/21 10:14:42] ppocr INFO: keep_keys : ['image', 'label_ctc', 'label_sar', 'length', 'valid_ratio']
[2022/10/21 10:14:42] ppocr INFO: loader :
[2022/10/21 10:14:42] ppocr INFO: batch_size_per_card : 2
[2022/10/21 10:14:42] ppocr INFO: drop_last : True
[2022/10/21 10:14:42] ppocr INFO: num_workers : 4
[2022/10/21 10:14:42] ppocr INFO: shuffle : True
[2022/10/21 10:14:42] ppocr INFO: profiler_options : None
[2022/10/21 10:14:42] ppocr INFO: train with paddle 2.3.2 and device Place(gpu:0)
[2022/10/21 10:14:42] ppocr INFO: Initialize indexs of datasets:./train_data/rec_gt_train.txt
[2022/10/21 10:14:42] ppocr INFO: Initialize indexs of datasets:./train_data/rec_gt_test.txt
W1021 10:14:42.292580 5755 gpu_resources.cc:61] Please NOTE: device: 0, GPU Compute Capability: 7.5, Driver API Version: 11.2, Runtime API Version: 10.2
W1021 10:14:42.299518 5755 gpu_resources.cc:91] device: 0, cuDNN Version: 8.1.
[2022/10/21 10:14:43] ppocr INFO: train dataloader has 2 iters
[2022/10/21 10:14:43] ppocr INFO: valid dataloader has 2 iters
[2022/10/21 10:14:43] ppocr INFO: resume from arabic_PP-OCRv3_rec_train/best_accuracy
[2022/10/21 10:14:43] ppocr INFO: During the training process, after the 0th iteration, an evaluation is run every 100 iterations
[2022/10/21 10:14:46] ppocr INFO: epoch: [98/200], global_step: 1, lr: 0.000018, acc: 0.000000, norm_edit_dis: 0.183337, CTCLoss: 394.141571, SARLoss: 6.391978, loss: 400.533539, avg_reader_cost: 0.22181 s, avg_batch_cost: 2.87783 s, avg_samples: 2.0, ips: 0.69497 samples/s, eta: 0:09:49
[2022/10/21 10:14:46] ppocr INFO: epoch: [98/200], global_step: 2, lr: 0.000483, acc: 0.000000, norm_edit_dis: 0.129766, CTCLoss: 335.271667, SARLoss: 6.686296, loss: 341.957947, avg_reader_cost: 0.00015 s, avg_batch_cost: 0.10519 s, avg_samples: 2.0, ips: 19.01316 samples/s, eta: 0:05:04
[2022/10/21 10:14:47] ppocr INFO: save model in ./output/v3_arabic_mobile/latest
[2022/10/21 10:14:47] ppocr INFO: save model in ./output/v3_arabic_mobile/iter_epoch_98
[2022/10/21 10:14:49] ppocr INFO: epoch: [99/200], global_step: 3, lr: 0.000949, acc: 0.000000, norm_edit_dis: 0.183337, CTCLoss: 276.401733, SARLoss: 6.391978, loss: 283.382355, avg_reader_cost: 2.92971 s, avg_batch_cost: 3.04973 s, avg_samples: 2.0, ips: 0.65580 samples/s, eta: 0:06:48
[2022/10/21 10:14:49] ppocr INFO: epoch: [99/200], global_step: 4, lr: 0.000950, acc: 0.000000, norm_edit_dis: 0.143628, CTCLoss: 335.271667, SARLoss: 6.125015, loss: 341.957947, avg_reader_cost: 0.00012 s, avg_batch_cost: 0.10430 s, avg_samples: 2.0, ips: 19.17620 samples/s, eta: 0:05:09
[2022/10/21 10:14:50] ppocr INFO: save model in ./output/v3_arabic_mobile/latest
[2022/10/21 10:14:50] ppocr INFO: save model in ./output/v3_arabic_mobile/iter_epoch_99
[2022/10/21 10:14:50] ppocr INFO: epoch: [100/200], global_step: 5, lr: 0.000951, acc: 0.000000, norm_edit_dis: 0.106065, CTCLoss: 276.401733, SARLoss: 5.858052, loss: 283.382355, avg_reader_cost: 1.07871 s, avg_batch_cost: 1.18832 s, avg_samples: 2.0, ips: 1.68305 samples/s, eta: 0:04:54
[2022/10/21 10:14:50] ppocr INFO: epoch: [100/200], global_step: 6, lr: 0.000952, acc: 0.000000, norm_edit_dis: 0.142429, CTCLoss: 268.454895, SARLoss: 5.320616, loss: 274.336761, avg_reader_cost: 0.01492 s, avg_batch_cost: 0.10398 s, avg_samples: 2.0, ips: 19.23419 samples/s, eta: 0:04:07
[2022/10/21 10:14:51] ppocr INFO: save model in ./output/v3_arabic_mobile/latest
[2022/10/21 10:14:51] ppocr INFO: save model in ./output/v3_arabic_mobile/iter_epoch_100
[2022/10/21 10:14:52] ppocr INFO: epoch: [101/200], global_step: 7, lr: 0.000952, acc: 0.000000, norm_edit_dis: 0.178792, CTCLoss: 260.507996, SARLoss: 4.783182, loss: 265.291168, avg_reader_cost: 1.34266 s, avg_batch_cost: 1.44850 s, avg_samples: 2.0, ips: 1.38074 samples/s, eta: 0:04:12
[2022/10/21 10:14:52] ppocr INFO: epoch: [101/200], global_step: 8, lr: 0.000953, acc: 0.000000, norm_edit_dis: 0.181065, CTCLoss: 217.588837, SARLoss: 4.735386, loss: 221.863815, avg_reader_cost: 0.00070 s, avg_batch_cost: 0.08536 s, avg_samples: 2.0, ips: 23.42912 samples/s, eta: 0:03:41
[2022/10/21 10:14:53] ppocr INFO: save model in ./output/v3_arabic_mobile/latest
[2022/10/21 10:14:53] ppocr INFO: save model in ./output/v3_arabic_mobile/iter_epoch_101
[2022/10/21 10:14:53] ppocr INFO: epoch: [102/200], global_step: 9, lr: 0.000954, acc: 0.000000, norm_edit_dis: 0.183337, CTCLoss: 174.669678, SARLoss: 4.687589, loss: 178.436462, avg_reader_cost: 1.16604 s, avg_batch_cost: 1.26441 s, avg_samples: 2.0, ips: 1.58176 samples/s, eta: 0:03:43
[2022/10/21 10:14:53] ppocr INFO: epoch: [102/200], global_step: 10, lr: 0.000955, acc: 0.000000, norm_edit_dis: 0.186700, CTCLoss: 217.588837, SARLoss: 4.361302, loss: 221.863815, avg_reader_cost: 0.00015 s, avg_batch_cost: 0.08058 s, avg_samples: 2.0, ips: 24.82050 samples/s, eta: 0:03:22
[2022/10/21 10:14:54] ppocr INFO: save model in ./output/v3_arabic_mobile/latest
[2022/10/21 10:14:56] ppocr INFO: save model in ./output/v3_arabic_mobile/iter_epoch_102
[2022/10/21 10:14:56] ppocr INFO: epoch: [103/200], global_step: 11, lr: 0.000956, acc: 0.000000, norm_edit_dis: 0.183337, CTCLoss: 198.927856, SARLoss: 4.035015, loss: 201.810928, avg_reader_cost: 2.50583 s, avg_batch_cost: 2.62582 s, avg_samples: 2.0, ips: 0.76167 samples/s, eta: 0:03:49
[2022/10/21 10:14:56] ppocr INFO: epoch: [103/200], global_step: 12, lr: 0.000957, acc: 0.000000, norm_edit_dis: 0.186700, CTCLoss: 186.798767, SARLoss: 3.900904, loss: 190.123672, avg_reader_cost: 0.00020 s, avg_batch_cost: 0.10338 s, avg_samples: 2.0, ips: 19.34553 samples/s, eta: 0:03:30
[2022/10/21 10:14:57] ppocr INFO: save model in ./output/v3_arabic_mobile/latest
[2022/10/21 10:14:57] ppocr INFO: save model in ./output/v3_arabic_mobile/iter_epoch_103
[2022/10/21 10:14:59] ppocr INFO: epoch: [104/200], global_step: 13, lr: 0.000957, acc: 0.000000, norm_edit_dis: 0.190063, CTCLoss: 174.669678, SARLoss: 3.766792, loss: 178.436462, avg_reader_cost: 2.35733 s, avg_batch_cost: 2.47507 s, avg_samples: 2.0, ips: 0.80806 samples/s, eta: 0:03:50
[2022/10/21 10:14:59] ppocr INFO: epoch: [104/200], global_step: 14, lr: 0.000958, acc: 0.000000, norm_edit_dis: 0.190271, CTCLoss: 157.876434, SARLoss: 3.673026, loss: 162.103638, avg_reader_cost: 0.00013 s, avg_batch_cost: 0.10350 s, avg_samples: 2.0, ips: 19.32343 samples/s, eta: 0:03:34
[2022/10/21 10:14:59] ppocr INFO: save model in ./output/v3_arabic_mobile/latest
[2022/10/21 10:15:00] ppocr INFO: save model in ./output/v3_arabic_mobile/iter_epoch_104
[2022/10/21 10:15:01] ppocr INFO: epoch: [105/200], global_step: 15, lr: 0.000959, acc: 0.000000, norm_edit_dis: 0.190480, CTCLoss: 141.083206, SARLoss: 3.579259, loss: 145.770798, avg_reader_cost: 1.74843 s, avg_batch_cost: 1.89828 s, avg_samples: 2.0, ips: 1.05358 samples/s, eta: 0:03:43
[2022/10/21 10:15:02] ppocr INFO: epoch: [105/200], global_step: 16, lr: 0.000960, acc: 0.000000, norm_edit_dis: 0.191075, CTCLoss: 120.322723, SARLoss: 3.520793, loss: 124.007881, avg_reader_cost: 1.66592 s, avg_batch_cost: 1.77326 s, avg_samples: 2.0, ips: 1.12786 samples/s, eta: 0:03:49
[2022/10/21 10:15:03] ppocr INFO: save model in ./output/v3_arabic_mobile/latest
[2022/10/21 10:15:03] ppocr INFO: save model in ./output/v3_arabic_mobile/iter_epoch_105
[2022/10/21 10:15:04] ppocr INFO: epoch: [106/200], global_step: 17, lr: 0.000960, acc: 0.000000, norm_edit_dis: 0.191671, CTCLoss: 99.562241, SARLoss: 3.462327, loss: 102.244965, avg_reader_cost: 1.47188 s, avg_batch_cost: 1.59000 s, avg_samples: 2.0, ips: 1.25786 samples/s, eta: 0:03:52
[2022/10/21 10:15:04] ppocr INFO: epoch: [106/200], global_step: 18, lr: 0.000961, acc: 0.000000, norm_edit_dis: 0.192763, CTCLoss: 94.925621, SARLoss: 3.398798, loss: 97.778091, avg_reader_cost: 0.00013 s, avg_batch_cost: 0.10358 s, avg_samples: 2.0, ips: 19.30804 samples/s, eta: 0:03:39
[2022/10/21 10:15:05] ppocr INFO: save model in ./output/v3_arabic_mobile/latest
[2022/10/21 10:15:05] ppocr INFO: save model in ./output/v3_arabic_mobile/iter_epoch_106
[2022/10/21 10:15:06] ppocr INFO: epoch: [107/200], global_step: 19, lr: 0.000962, acc: 0.000000, norm_edit_dis: 0.193854, CTCLoss: 90.289001, SARLoss: 3.335268, loss: 93.311218, avg_reader_cost: 1.52029 s, avg_batch_cost: 1.63275 s, avg_samples: 2.0, ips: 1.22492 samples/s, eta: 0:03:42
[2022/10/21 10:15:06] ppocr INFO: epoch: [107/200], global_step: 20, lr: 0.000963, acc: 0.000000, norm_edit_dis: 0.198852, CTCLoss: 84.507553, SARLoss: 3.307106, loss: 87.446266, avg_reader_cost: 0.16469 s, avg_batch_cost: 0.26266 s, avg_samples: 2.0, ips: 7.61447 samples/s, eta: 0:03:32
[2022/10/21 10:15:06] ppocr INFO: save model in ./output/v3_arabic_mobile/latest
[2022/10/21 10:15:07] ppocr INFO: save model in ./output/v3_arabic_mobile/iter_epoch_107
[2022/10/21 10:15:08] ppocr INFO: epoch: [108/200], global_step: 21, lr: 0.000964, acc: 0.000000, norm_edit_dis: 0.205870, CTCLoss: 72.377457, SARLoss: 3.150580, loss: 75.053223, avg_reader_cost: 1.50790 s, avg_batch_cost: 1.62894 s, avg_samples: 2.0, ips: 1.22779 samples/s, eta: 0:03:35
[2022/10/21 10:15:08] ppocr INFO: epoch: [108/200], global_step: 22, lr: 0.000966, acc: 0.000000, norm_edit_dis: 0.208745, CTCLoss: 64.772110, SARLoss: 2.952643, loss: 67.659752, avg_reader_cost: 0.00015 s, avg_batch_cost: 0.10482 s, avg_samples: 2.0, ips: 19.07989 samples/s, eta: 0:03:25
[2022/10/21 10:15:08] ppocr INFO: save model in ./output/v3_arabic_mobile/latest
[2022/10/21 10:15:09] ppocr INFO: save model in ./output/v3_arabic_mobile/iter_epoch_108
[2022/10/21 10:15:09] ppocr INFO: epoch: [109/200], global_step: 23, lr: 0.000967, acc: 0.000000, norm_edit_dis: 0.211620, CTCLoss: 64.772110, SARLoss: 2.869136, loss: 67.659752, avg_reader_cost: 1.64637 s, avg_batch_cost: 1.75551 s, avg_samples: 2.0, ips: 1.13927 samples/s, eta: 0:03:29
[2022/10/21 10:15:10] ppocr INFO: epoch: [109/200], global_step: 24, lr: 0.000968, acc: 0.000000, norm_edit_dis: 0.219844, CTCLoss: 64.772110, SARLoss: 2.828163, loss: 67.659752, avg_reader_cost: 0.00015 s, avg_batch_cost: 0.09609 s, avg_samples: 2.0, ips: 20.81365 samples/s, eta: 0:03:20
[2022/10/21 10:15:10] ppocr INFO: save model in ./output/v3_arabic_mobile/latest
[2022/10/21 10:15:11] ppocr INFO: save model in ./output/v3_arabic_mobile/iter_epoch_109
[2022/10/21 10:15:11] ppocr INFO: epoch: [110/200], global_step: 25, lr: 0.000970, acc: 0.000000, norm_edit_dis: 0.228815, CTCLoss: 61.830845, SARLoss: 2.769616, loss: 65.259949, avg_reader_cost: 1.56045 s, avg_batch_cost: 1.66414 s, avg_samples: 2.0, ips: 1.20182 samples/s, eta: 0:03:23
[2022/10/21 10:15:11] ppocr INFO: epoch: [110/200], global_step: 26, lr: 0.000971, acc: 0.000000, norm_edit_dis: 0.238916, CTCLoss: 64.772110, SARLoss: 2.710417, loss: 67.659752, avg_reader_cost: 0.04279 s, avg_batch_cost: 0.13024 s, avg_samples: 2.0, ips: 15.35599 samples/s, eta: 0:03:15
[2022/10/21 10:15:12] ppocr INFO: save model in ./output/v3_arabic_mobile/latest
[2022/10/21 10:15:12] ppocr INFO: save model in ./output/v3_arabic_mobile/iter_epoch_110
[2022/10/21 10:15:13] ppocr INFO: epoch: [111/200], global_step: 27, lr: 0.000972, acc: 0.000000, norm_edit_dis: 0.238029, CTCLoss: 66.473892, SARLoss: 2.664080, loss: 68.694649, avg_reader_cost: 1.04785 s, avg_batch_cost: 1.17008 s, avg_samples: 2.0, ips: 1.70929 samples/s, eta: 0:03:15
[2022/10/21 10:15:13] ppocr INFO: epoch: [111/200], global_step: 28, lr: 0.000974, acc: 0.000000, norm_edit_dis: 0.238029, CTCLoss: 64.772110, SARLoss: 2.635515, loss: 67.659752, avg_reader_cost: 0.00014 s, avg_batch_cost: 0.09467 s, avg_samples: 2.0, ips: 21.12696 samples/s, eta: 0:03:07
[2022/10/21 10:15:13] ppocr INFO: save model in ./output/v3_arabic_mobile/latest
[2022/10/21 10:15:14] ppocr INFO: save model in ./output/v3_arabic_mobile/iter_epoch_111
[2022/10/21 10:15:14] ppocr INFO: epoch: [112/200], global_step: 29, lr: 0.000975, acc: 0.000000, norm_edit_dis: 0.238029, CTCLoss: 65.063431, SARLoss: 2.583038, loss: 67.659752, avg_reader_cost: 1.22625 s, avg_batch_cost: 1.33414 s, avg_samples: 2.0, ips: 1.49910 samples/s, eta: 0:03:08
[2022/10/21 10:15:15] ppocr INFO: epoch: [112/200], global_step: 30, lr: 0.000976, acc: 0.000000, norm_edit_dis: 0.238029, CTCLoss: 63.806744, SARLoss: 2.518409, loss: 66.475739, avg_reader_cost: 0.84602 s, avg_batch_cost: 0.95220 s, avg_samples: 2.0, ips: 2.10041 samples/s, eta: 0:03:06
[2022/10/21 10:15:15] ppocr INFO: save model in ./output/v3_arabic_mobile/latest
[2022/10/21 10:15:16] ppocr INFO: save model in ./output/v3_arabic_mobile/iter_epoch_112
[2022/10/21 10:15:16] ppocr INFO: epoch: [113/200], global_step: 31, lr: 0.000977, acc: 0.000000, norm_edit_dis: 0.245363, CTCLoss: 63.806744, SARLoss: 2.362904, loss: 66.475739, avg_reader_cost: 1.16328 s, avg_batch_cost: 1.28003 s, avg_samples: 2.0, ips: 1.56246 samples/s, eta: 0:03:06
[2022/10/21 10:15:16] ppocr INFO: epoch: [113/200], global_step: 32, lr: 0.000978, acc: 0.000000, norm_edit_dis: 0.252248, CTCLoss: 59.601883, SARLoss: 2.191519, loss: 61.891373, avg_reader_cost: 0.00016 s, avg_batch_cost: 0.10387 s, avg_samples: 2.0, ips: 19.25521 samples/s, eta: 0:03:00
[2022/10/21 10:15:17] ppocr INFO: save model in ./output/v3_arabic_mobile/latest
[2022/10/21 10:15:17] ppocr INFO: save model in ./output/v3_arabic_mobile/iter_epoch_113
[2022/10/21 10:15:18] ppocr INFO: epoch: [114/200], global_step: 33, lr: 0.000980, acc: 0.000000, norm_edit_dis: 0.245363, CTCLoss: 63.806744, SARLoss: 2.106306, loss: 66.475739, avg_reader_cost: 1.15275 s, avg_batch_cost: 1.26946 s, avg_samples: 2.0, ips: 1.57547 samples/s, eta: 0:03:00
[2022/10/21 10:15:20] ppocr INFO: epoch: [114/200], global_step: 34, lr: 0.000981, acc: 0.000000, norm_edit_dis: 0.252248, CTCLoss: 59.601883, SARLoss: 2.054793, loss: 61.891373, avg_reader_cost: 2.01648 s, avg_batch_cost: 2.12311 s, avg_samples: 2.0, ips: 0.94202 samples/s, eta: 0:03:05
[2022/10/21 10:15:20] ppocr INFO: save model in ./output/v3_arabic_mobile/latest
[2022/10/21 10:15:21] ppocr INFO: save model in ./output/v3_arabic_mobile/iter_epoch_114
[2022/10/21 10:15:22] ppocr INFO: epoch: [115/200], global_step: 35, lr: 0.000982, acc: 0.000000, norm_edit_dis: 0.252248, CTCLoss: 62.577076, SARLoss: 2.044794, loss: 64.666428, avg_reader_cost: 1.77667 s, avg_batch_cost: 1.89515 s, avg_samples: 2.0, ips: 1.05533 samples/s, eta: 0:03:07
[2022/10/21 10:15:23] ppocr INFO: epoch: [115/200], global_step: 36, lr: 0.000983, acc: 0.000000, norm_edit_dis: 0.259619, CTCLoss: 62.868393, SARLoss: 1.998415, loss: 64.666428, avg_reader_cost: 1.58293 s, avg_batch_cost: 1.68790 s, avg_samples: 2.0, ips: 1.18490 samples/s, eta: 0:03:09
[2022/10/21 10:15:24] ppocr INFO: save model in ./output/v3_arabic_mobile/latest
[2022/10/21 10:15:24] ppocr INFO: save model in ./output/v3_arabic_mobile/iter_epoch_115
[2022/10/21 10:15:25] ppocr INFO: epoch: [116/200], global_step: 37, lr: 0.000984, acc: 0.000000, norm_edit_dis: 0.276331, CTCLoss: 62.868393, SARLoss: 1.951480, loss: 64.666428, avg_reader_cost: 1.33913 s, avg_batch_cost: 1.45781 s, avg_samples: 2.0, ips: 1.37192 samples/s, eta: 0:03:10
[2022/10/21 10:15:25] ppocr INFO: epoch: [116/200], global_step: 38, lr: 0.000985, acc: 0.000000, norm_edit_dis: 0.259619, CTCLoss: 61.491783, SARLoss: 1.941236, loss: 63.062988, avg_reader_cost: 0.00014 s, avg_batch_cost: 0.10557 s, avg_samples: 2.0, ips: 18.94412 samples/s, eta: 0:03:04
[2022/10/21 10:15:26] ppocr INFO: save model in ./output/v3_arabic_mobile/latest
[2022/10/21 10:15:26] ppocr INFO: save model in ./output/v3_arabic_mobile/iter_epoch_116
[2022/10/21 10:15:27] ppocr INFO: epoch: [117/200], global_step: 39, lr: 0.000986, acc: 0.000000, norm_edit_dis: 0.259619, CTCLoss: 61.491783, SARLoss: 1.807949, loss: 63.062988, avg_reader_cost: 1.76529 s, avg_batch_cost: 1.87486 s, avg_samples: 2.0, ips: 1.06675 samples/s, eta: 0:03:06
[2022/10/21 10:15:27] ppocr INFO: epoch: [117/200], global_step: 40, lr: 0.000987, acc: 0.000000, norm_edit_dis: 0.259619, CTCLoss: 61.491783, SARLoss: 1.807949, loss: 63.062988, avg_reader_cost: 0.20065 s, avg_batch_cost: 0.30993 s, avg_samples: 2.0, ips: 6.45307 samples/s, eta: 0:03:02
[2022/10/21 10:15:28] ppocr INFO: save model in ./output/v3_arabic_mobile/latest
[2022/10/21 10:15:29] ppocr INFO: save model in ./output/v3_arabic_mobile/iter_epoch_117
[2022/10/21 10:15:29] ppocr INFO: epoch: [118/200], global_step: 41, lr: 0.000988, acc: 0.000000, norm_edit_dis: 0.252248, CTCLoss: 62.868393, SARLoss: 1.641998, loss: 64.666428, avg_reader_cost: 1.94799 s, avg_batch_cost: 2.08293 s, avg_samples: 2.0, ips: 0.96019 samples/s, eta: 0:03:05
[2022/10/21 10:15:29] ppocr INFO: epoch: [118/200], global_step: 42, lr: 0.000988, acc: 0.000000, norm_edit_dis: 0.252248,
any help ?
Hi, you can try the following suggestions: 1)check if the character_dict_path has the same characters as your training characters 2)I find some pictures have long characters, whether the picture size is too large(will be scaled to 320*48) If you have any question, please contact us again.
@an1018 thanks for your help
- the character_dict is Arabic and English letters with the numbers and special characters and used it with the same data but they were separated to words and the accuracy increased normally so the character_dict is good
- should i increase the max number of characters than 25 ?
1、character_dict file should be consistent with the annotated information 2、If the shape of image is big, when resizing the image to 320*48, the text will be compressed, and the accuracy may not good
1、character_dict file should be consistent with the annotated information 2、If the shape of image is big, when resizing the image to 320*48, the text will be compressed, and the accuracy may not good
- i didn't get what do you mean with annotated information
- so can i increase the image size or there are other solutions to this point?
@an1018
1、character_dict_path : dictionary file; label_file_list:image annotated information You need to ensure that all annoted information appear in the dictionary file 2、1)You can decrease the length of characters 2)Or, if you still use such long data for training and prediction, you need to increase the shape of the training data accordingly, such as [3, 32, 640] 3、It's also possible that the num of dataset is too small, you can try increase the number of images
You can refer to #6632
@an1018 i can change the input shape without the need to start the model training from scratch? Also how many image with be a good starting point ? Can you run a small experiment with one image in the train and the same image in test and run it for n epochs you will notice that the accuracy is zero also !
i also have noticed that the runing
!python tools/infer_rec.py -c arabic_PP-OCRv3_rec_train/config.yml
on image:
is giving the same results like running the same image on the library:
ocr = PaddleOCR(lang=lang,show_log = False,use_angle_cls = True,unclip_ratio=3)
result = ocr.ocr(image_path)
why this is happening ? shouldn't the best_accuracy model that we use for training is the same one used in production by the paddleocr package ?