PaddleOCR
PaddleOCR copied to clipboard
关于ch_PP-OCRv3_det_dml.yml的配置问题
你好我把默认的预训练模型resnet50 修改为了18 配置如下 Global: use_gpu: true epoch_num: 200 log_smooth_window: 20 print_batch_step: 100 save_model_dir: ../output/ch_db_mv3_ocr/ save_epoch_step: 1200
evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [3000, 2000] cal_metric_during_train: False pretrained_model: ../pretrain_models/ResNet18_vd_pretrained checkpoints: save_inference_dir: use_visualdl: False infer_img: doc/imgs_en/img_10.jpg save_res_path: ../output/det_db/predicts_db.txt
Architecture: name: DistillationModel algorithm: Distillation model_type: det Models: Student: return_all_feats: false model_type: det algorithm: DB Backbone: name: ResNet_vd in_channels: 3 layers: 18 Neck: name: LKPAN out_channels: 256 Head: name: DBHead kernel_list: [7,2,2] k: 50 Student2: return_all_feats: false model_type: det algorithm: DB Backbone: name: ResNet_vd in_channels: 3 layers: 18 Neck: name: LKPAN out_channels: 256 Head: name: DBHead kernel_list: [7,2,2] k: 50
Loss: name: CombinedLoss loss_config_list:
- DistillationDMLLoss:
model_name_pairs:
- ["Student", "Student2"] maps_name: "thrink_maps" weight: 1.0
act: None
model_name_pairs: ["Student", "Student2"] key: maps - DistillationDBLoss:
weight: 1.0
model_name_list: ["Student", "Student2"]
key: maps
name: DBLoss balance_loss: true main_loss_type: DiceLoss alpha: 5 beta: 10 ohem_ratio: 3
Optimizer: name: Adam beta1: 0.9 beta2: 0.999 lr: name: Cosine learning_rate: 0.001 warmup_epoch: 2 regularizer: name: 'L2' factor: 0
PostProcess: name: DistillationDBPostProcess model_name: ["Student", "Student2"] key: head_out thresh: 0.3 box_thresh: 0.6 max_candidates: 1000 unclip_ratio: 1.5
Metric: name: DistillationMetric base_metric_name: DetMetric main_indicator: hmean key: "Student"
Train: dataset: name: SimpleDataSet data_dir: ../train_data/ocr_det_training/ label_file_list: - ../train_data/ocr_train_label.txt ratio_list: [1.0] transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - DetLabelEncode: # Class handling label - CopyPaste: - IaaAugment: augmenter_args: - { 'type': Fliplr, 'args': { 'p': 0.5 } } - { 'type': Affine, 'args': { 'rotate': [-10, 10] } } - { 'type': Resize, 'args': { 'size': [0.5, 3] } } - EastRandomCropData: size: [960, 960] max_tries: 50 keep_ratio: true - MakeBorderMap: shrink_ratio: 0.4 thresh_min: 0.3 thresh_max: 0.7 - MakeShrinkMap: shrink_ratio: 0.4 min_text_size: 8 - NormalizeImage: scale: 1./255. mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: 'hwc' - ToCHWImage: - KeepKeys: keep_keys: ['image', 'threshold_map', 'threshold_mask', 'shrink_map', 'shrink_mask'] # the order of the dataloader list loader: shuffle: True drop_last: False batch_size_per_card: 4 num_workers: 4
Eval: dataset: name: SimpleDataSet data_dir: ../train_data/ocr_det_val/ label_file_list: - ../train_data/ocr_test_label.txt transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - DetLabelEncode: # Class handling label - DetResizeForTest:
image_shape: [736, 1280]
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: ['image', 'shape', 'polys', 'ignore_tags']
loader:
shuffle: False
drop_last: False
batch_size_per_card: 1 # must be 1
num_workers: 4
但是运行时弹出警告
模型应该对不上 这个是我配置哪里没改全吗 还是什么原因
即使按照要求 什么都不改 加入resnet-50 还是报这个警告
看起来一个是R50_vd_ssld,一个是R50,参数是有些区别的
您好,我跟您一样的问题,请问您解决了吗