PaddleOCR
PaddleOCR copied to clipboard
已经训练过的模型可以更改其learning_rate的方法继续训练吗? 以及,各种lr方法的示例可以如training.md第39行中那样给新手做一个说明书吗?不知道如OneCycle等lr方法具体怎么在yml文件中配置。
请提供下述完整信息以便快速定位问题/Please provide the following information to quickly locate the problem
-
系统环境/System Environment:win10
-
版本号/Version:Paddle: PaddleOCR: 问题相关组件/Related components:
- ppocr/optimizer/learning_rate.py(对应第一问)
- doc/doc_ch/training.md 第39行:(对应第二问)
Optimizer:
...
lr:
name: Piecewise
decay_epochs : [700, 800]
values : [0.001, 0.0001]
warmup_epoch: 5
-
运行指令/Command Code: python tools/train.py -c configs/det/det_r34_vd_db_artfont.yml
-
完整报错/Complete Error Message:
Traceback (most recent call last):
File "tools/train.py", line 202, in <module>
main(config, device, logger, vdl_writer)
File "tools/train.py", line 169, in main
pre_best_model_dict = load_model(config, model, optimizer,
File "C:\Users\admin\Downloads\PPOCR\projects\PaddleOCR\ppocr\utils\save_load.py", line 124, in load_model
optimizer.set_state_dict(optim_dict)
File "C:\Users\admin\anaconda3\envs\paddle_env\lib\site-packages\decorator.py", line 232, in fun
return caller(func, *(extras + args), **kw)
File "C:\Users\admin\anaconda3\envs\paddle_env\lib\site-packages\paddle\fluid\wrapped_decorator.py", line 25, in __impl__
return wrapped_func(*args, **kwargs)
File "C:\Users\admin\anaconda3\envs\paddle_env\lib\site-packages\paddle\fluid\framework.py", line 434, in __impl__
return func(*args, **kwargs)
File "C:\Users\admin\anaconda3\envs\paddle_env\lib\site-packages\paddle\optimizer\optimizer.py", line 302, in set_state_dict
self._learning_rate.set_dict(state_dict["LR_Scheduler"])
KeyError: 'LR_Scheduler'
- configs/det/det_r34_vd_db_artfont.yml:
Global:
use_gpu: true
epoch_num: 1200
log_smooth_window: 20
print_batch_step: 10
save_model_dir: ./output/det_r34_vd/
save_epoch_step: 1200
eval_batch_step: [0,2000]
cal_metric_during_train: False
checkpoints: ./output/det_r34_vd/latest
save_inference_dir:
use_visualdl: False
infer_img: doc/imgs_en/img_10.jpg
save_res_path: ./output/det_db/predicts_db.txt
Architecture:
model_type: det
algorithm: DB
Transform:
Backbone:
name: ResNet_vd
layers: 34
Neck:
name: DBFPN
out_channels: 256
Head:
name: DBHead
k: 50
Loss:
name: DBLoss
balance_loss: true
main_loss_type: DiceLoss
alpha: 5
beta: 10
ohem_ratio: 3
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
#learning_rate: 0.001 # 之前的训练是用常数lr,只改常数值继续 训练是可以的。
name: OneCycle # 训练到一半想改用OneCycle试试。就报错了。不清楚是训练以后不可以改lr方法,还是我调用这个lr方法的配置有问题。
max_lr: 0.05
regularizer:
name: 'L2'
factor: 0
PostProcess:
name: DBPostProcess
thresh: 0.3
box_thresh: 0.7
max_candidates: 1000
unclip_ratio: 1.5
Metric:
name: DetMetric
main_indicator: hmean
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/artfont
label_file_list:
- ./train_data/artfont/training.txt
ratio_list: [1.0]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- IaaAugment:
augmenter_args:
- { 'type': Fliplr, 'args': { 'p': 0.5 } }
- { 'type': Affine, 'args': { 'rotate': [-10, 10] } }
- { 'type': Resize, 'args': { 'size': [0.5, 3] } }
- EastRandomCropData:
size: [640, 640]
max_tries: 50
keep_ratio: true
- MakeBorderMap:
shrink_ratio: 0.4
thresh_min: 0.3
thresh_max: 0.7
- MakeShrinkMap:
shrink_ratio: 0.4
min_text_size: 8
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: ['image', 'threshold_map', 'threshold_mask', 'shrink_map', 'shrink_mask'] # the order of the dataloader list
loader:
shuffle: True
drop_last: False
batch_size_per_card: 16
num_workers: 4
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/artfont/
label_file_list:
- ./train_data/artfont/eval.txt
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- DetResizeForTest:
image_shape: [736, 1280]
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: ['image', 'shape', 'polys', 'ignore_tags']
loader:
shuffle: False
drop_last: False
batch_size_per_card: 1 # must be 1
num_workers: 8
- 确实,如果重新建立模型。就可以训练了。
- 似乎直接根据ppocr/optimizer/learning_rate.py文件中lr函数的参数在yml中给定就可以了。只是不清楚,应该给什么典型数值或者tuple、list
閲讀 ppocr/optimizer/init.py可以瞭解:
def build_lr_scheduler(lr_config, epochs, step_each_epoch):
from . import learning_rate
lr_config.update({'epochs': epochs, 'step_each_epoch': step_each_epoch})
lr_name = lr_config.pop('name', 'Const')
lr = getattr(learning_rate, lr_name)(**lr_config)()
return lr