PaddleNLP icon indicating copy to clipboard operation
PaddleNLP copied to clipboard

[LLM] fix bug when masked_lm_loss is None in llama modeling.py

Open cqulilujia opened this issue 9 months ago • 3 comments

Change-Id: I7b6ba9248e61bee24eb463698af26727394f023a

PR types

Bug fixes

PR changes

llama modeling

Description

如issue #8299 所示,llama模型LlamaPretrainingCriterion类中的masked_lm_loss为空时,无法计算loss = paddle.mean,mean不支持输入shape==[0],本次修复恢复为之前版本的实现

cqulilujia avatar Apr 29 '24 08:04 cqulilujia

Thanks for your contribution!

paddle-bot[bot] avatar Apr 29 '24 08:04 paddle-bot[bot]

CLA assistant check
Thank you for your submission! We really appreciate it. Like many open source projects, we ask that you sign our Contributor License Agreement before we can accept your contribution.


lilujia seems not to be a GitHub user. You need a GitHub account to be able to sign the CLA. If you have already a GitHub account, please add the email address used for this commit to your account.
You have signed the CLA already but the status is still pending? Let us recheck it.

CLAassistant avatar Apr 29 '24 10:04 CLAassistant

还有一种改法是: masked_lm_loss = masked_lm_loss[masked_lm_loss > 0] if (masked_lm_loss.shape[0] == 0): loss = paddle.zeros([], dtype=masked_lm_loss.dtype) loss.stop_gradient = False else: loss = paddle.mean(masked_lm_loss)

cqulilujia avatar Apr 30 '24 03:04 cqulilujia

还有一种改法是: masked_lm_loss = masked_lm_loss[masked_lm_loss > 0] if (masked_lm_loss.shape[0] == 0): loss = paddle.zeros([], dtype=masked_lm_loss.dtype) loss.stop_gradient = False else: loss = paddle.mean(masked_lm_loss)

这两种改法是等效的吗?能否通过加一些日子把问题数据找出来?

Xreki avatar May 06 '24 01:05 Xreki

还有一种改法是: masked_lm_loss = masked_lm_loss[masked_lm_loss > 0] if (masked_lm_loss.shape[0] == 0): loss = paddle.zeros([], dtype=masked_lm_loss.dtype) loss.stop_gradient = False else: loss = paddle.mean(masked_lm_loss)

这两种改法是等效的吗?能否通过加一些日子把问题数据找出来?

仅从目前我遇到的实例来看两种结果是一致的,从功能来看第二种更符合原始实现,另外我看这个PR #8342 已经修复了这个问题,用的第二种方式

cqulilujia avatar May 06 '24 11:05 cqulilujia