PaddleClas
PaddleClas copied to clipboard
按照教程训练的主体识别效果差
我需要训练关于鞋子的主体识别,按照这个教程操作的:https://github.com/PaddlePaddle/PaddleClas/blob/release/2.5/docs/zh_CN/training/PP-ShiTu/mainbody_detection.md#41-%E6%8E%A8%E7%90%86%E6%A8%A1%E5%9E%8B%E5%87%86%E5%A4%87
- 使用PaddleDetection-release-2.6
- 训练环境信息: a. 具体操作系统Windows b. Python版本号:3.6 c. CUDA/cuDNN版本:CUDA10.2/cuDNN 7.6.5等 3.picodet_lcnet_x2_5_640_mainbody.yml配置如下。其他文件中只修改了学习率为base_lr: 0.00025。
BASE: [ '../../../../runtime.yml', '../../base/picodet_esnet.yml', '../../base/optimizer_100e.yml', '../../base/picodet_640_reader.yml', ]
pretrain_weights: premodels/LCNet_x2_5_ssld_pretrained.pdparams #pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/LCNet_x2_5_ssld_pretrained.pdparams weights: output/picodet_lcnet_x2_5_640_mainbody/model_final find_unused_parameters: True use_ema: true cycle_epoch: 20 snapshot_epoch: 8
PicoDet: backbone: LCNet neck: CSPPAN head: PicoHead
LCNet: scale: 2.5 feature_maps: [3, 4, 5]
metric: COCO num_classes: 1
TrainDataset:
!COCODataSet
image_dir: JPEGImage
anno_path: ImageSets/voc_train.json
dataset_dir: dataset/MyDataset/shoes/
data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd']
EvalDataset: !COCODataSet image_dir: JPEGImage anno_path: ImageSets/voc_val.json dataset_dir: dataset/MyDataset/shoes/
TestDataset: !ImageFolder anno_path: ImageSets/voc_val.json # also support txt (like VOC's label_list.txt)
出现的问题: 1.预测的结果杂乱目标太多了,不知道哪里出了问题。希望指导下。如下图 2.按照文档修改了voc_train.json和voc_val.json里面的为"categories": [{"supercategory": "foreground", "id": 1, "name": "foreground"}]。只有前景类型,但是预测出来的都是‘person’,这是怎么回事?
遇到了同样的问题,请问你解决了吗?