onnx2tf
onnx2tf copied to clipboard
[TODO] Add 4 channels of image data to the sample data for quantization
Issue Type
Others
OS
Linux
onnx2tf version number
1.14.3
onnx version number
1.13.1
onnxruntime version number
1.15.0
onnxsim (onnx_simplifier) version number
0.4.17
tensorflow version number
2.13.0
Download URL for ONNX
Parameter Replacement JSON
N/A
Description
- Personal
- I want to automatically quantize 4 channels of image data.
- procedure
onnx2tf -i magic_touch.onnx -osd -coion -cotof -oiqt -qt per-tensor
saved_model output started ========================================================== saved_model output complete! Float32 tflite output complete! Float16 tflite output complete! Input signature information for quantization signature_name: serving_default input_name.0: input shape: (1, 512, 512, 4) dtype: <dtype: 'float32'> Dynamic Range Quantization tflite output complete! ERROR: For models that have multiple input OPs and need to perform INT8 quantization calibration using non-rgb-image input tensors, specify the calibration data with --quant_calib_input_op_name_np_data_path. model_input[n].shape: (1, 512, 512, 4)