k2sc icon indicating copy to clipboard operation
k2sc copied to clipboard

K2 systematics correction using Gaussian processes

K2 Systematics Correction

integration Licence MNRAS arXiv

Python package for K2 systematics correction using Gaussian processes.

Installation

git clone https://github.com/OxES/k2sc.git
cd k2sc
python setup.py install --user

Basic usage

A MAST K2 light curve can be detrended by calling

k2sc <filename>

where <filename> is either a MAST light curve filename, list of files, or a directory.

Useful flags

  • --flux-type can be either pdc or sap
  • --de-max-time <ss> maximum time (in seconds) to run global GP hyperparameter optimization (differential evolution) before switching to local optimization.
  • --de-npop <nn> size of the de population, can be set to 50 to speed up the optimization.
  • --save-dir <path> defines where to save the detrended files
  • --logfile <filename>

MPI

K2SC supports MPI automatically (requires MPI4Py.) Call k2sc as

mpirun -n N k2sc <files>

where <files> is a list of files or a directory to be detrended (for example, path/to/ktwo*.fits).

Requires

  • NumPy, SciPy, astropy, George, MPI4Py

Citing

If you use K2SC in your research, please cite

Aigrain, S., Parviainen, H. & Pope, B. (2016, accepted to MNRAS), arXiv:1603.09167

or use this ready-made BibTeX entry

@article{Aigrain2016,
    arxivId = {1603.09167},
    author = {Aigrain, Suzanne and Parviainen, Hannu and Pope, Benjamin},
    keywords = {data analysis,methods,photometry,planetary systems,techniques},
    title = {{K2SC: Flexible systematics correction and detrending of K2 light curves using Gaussian Process regression}},
    url = {http://arxiv.org/abs/1603.09167},
    year = {2016}
}

Authors

  • Hannu Parviainen
  • Suzanne Aigrain
  • Benjamin Pope