PySyft
PySyft copied to clipboard
TypeError: tuple_one_fold() got an unexpected keyword argument 'response_ids'
Description
A clear and concise description of the bug. print("input", x) #the above statement displays "input (Wrapper)>[PointerTensor | me:39278915926 -> bob:68975166682]" But when I try the below statement... it throws an error. print("list", x.tolist())
class Net(nn.Module): def init(self): super(Net, self).init() self.conv1 = nn.Conv2d(1, 6, kernel_size=5) self.conv2 = nn.Conv2d(6, 16, kernel_size=5) self.dropout = nn.Dropout2d() self.fc1 = nn.Linear(256, 64) self.fc2 = nn.Linear(64, 1)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2)
x = self.dropout(x)
x = x.view(1, -1)
x = F.relu(self.fc1(x))
x = self.fc2(x)
print("input", x)
print("list", x.tolist()) #here
return x
Additional Context
Add any other context about the problem here.
model.train() for epoch in range(epochs): model.train() for batch_idx, (data, target) in enumerate(federated_train_loader):
model.send(data.location) # <-- NEW: send the model to the right location
#print("location_data", data.location)
#print("location_data_id", data.id_at_location)
optimizer.zero_grad()
data = data.cuda()
target = target.cuda()
# Forward pass
output = model(data).cuda()
Is this issue still available?
@deepquantum88 are you able to show the error? If you call tolist
you would then just get a ListPointer instead of a TensorPointer, is there a reason you need to?
0.5 is no longer supported.