LOMO
LOMO copied to clipboard
实测LOMO++ deepspeed zero2 7b qlora llama 显存占用 感觉比正常的qlora + deepspeed zero2 显存占用大1倍
qlora 8196 23366MiB / 81251MiB
config = LoraConfig( r=8, lora_alpha=32, inference_mode=False, target_modules=["q_pro","v_proj","down_proj","up_proj"], lora_dropout=0.05, bias="none", task_type="CAUSAL_LM" )
测试代码:
llama
tokenizer = LlamaTokenizer.from_pretrained(model_id)
tokenizer.padding_side = "right"
tokenizer.bos_token_id = 1
tokenizer.eos_token_id = 2
tokenizer.pad_token_id = 0
tokenizer.unk_token_id = 0
# 初始化模型
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
config = LlamaConfig.from_pretrained(model_id)
model = LlamaForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
quantization_config=bnb_config,
load_in_4bit=True,
use_safetensors=True,
config = config,
device_map={"": int(os.environ.get("LOCAL_RANK") or 0)}
)
model.bos_token_id = 1
model.eos_token_id = 2
model.pad_token_id = 0
model.unk_token_id = 0
model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=True)
peft_params = []
non_peft_names = []
non_peft_params = []
for name, param in model.named_parameters():
if param.requires_grad is False:
continue
non_peft_names.append(name)
non_peft_params.append(param)
config = LoraConfig(
r=8,
lora_alpha=32,
inference_mode=False,
target_modules=["q_pro","v_proj","down_proj","up_proj"],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM"
)
model = get_peft_model(model, config)
print_trainable_parameters(model)
for name, param in model.named_parameters():
if name.split('base_model.model.')[1] in non_peft_names:
if not training_args.lora_only:
param.requires_grad = True
if "lora_" in name:
peft_params.append(param)
torch.cuda.empty_cache()
# 加载数据
train_data = Dataset.from_list(ff) # 略
valid_data = None
def tokenize(item, cutoff_len=cutoff_len):
result = {}
input_ids, labels, conversation = _addrole_masklabel_tokenize(item) # 略
attention_mask = [1] * len(input_ids)
result['input_ids'] = input_ids[:cutoff_len]
result['attention_mask'] = attention_mask[:cutoff_len]
result['labels'] = labels[:cutoff_len]
return result
train_data = train_data.map(tokenize)
# ========== Initialize our Trainer. ==========
training_args = transformers.TrainingArguments(
per_device_train_batch_size=bs,
gradient_accumulation_steps=8,
warmup_steps=1000,
optim="paged_adamw_32bit",
learning_rate=1e-5,
num_train_epochs=2,
fp16=True,
logging_steps=10,
save_strategy="steps",
save_steps=100,
output_dir=output_dir,
save_total_limit=1,
load_best_model_at_end=False,
ddp_find_unused_parameters=False, # if ddp else None,
deepspeed="ds.config"
# group_by_length=True
)
training_args.lora_only = True
training_args.do_train = True
training_args.hf_weight_decay = 0.1
training_args.hf_lr_scheduler_type = "cosine"
training_args.clip_loss_value = 20.0
training_args.gradient_clipping = 10.0
trainer = LOMOLoRATrainer(
model=model,
training_args=training_args,
data_collator={'train': DataCollatorForCauselLM(tokenizer, max_length=8196, padding_side='right'),
'eval': EvalDataCollatorForCauselLM(tokenizer, max_length=8196, padding_side='right')},
train_dataset=train_data,
eval_dataset=valid_data,
tokenizer=tokenizer,
compute_metrics=None,
optimizers={'model_parameters': peft_params},
)
trainer.train()
ps: deepspeed+zero2 的qlora 大约占用13432MiB / 81251MiB
看起来像是没有量化?我还没测试过结合量化训练