LOMO icon indicating copy to clipboard operation
LOMO copied to clipboard

实测LOMO++ deepspeed zero2 7b qlora llama 显存占用 感觉比正常的qlora + deepspeed zero2 显存占用大1倍

Open zlh1992 opened this issue 1 year ago • 1 comments

qlora 8196 23366MiB / 81251MiB

config = LoraConfig( r=8, lora_alpha=32, inference_mode=False, target_modules=["q_pro","v_proj","down_proj","up_proj"], lora_dropout=0.05, bias="none", task_type="CAUSAL_LM" )

测试代码:

llama

tokenizer = LlamaTokenizer.from_pretrained(model_id)
tokenizer.padding_side = "right"
tokenizer.bos_token_id = 1
tokenizer.eos_token_id = 2
tokenizer.pad_token_id = 0
tokenizer.unk_token_id = 0

# 初始化模型
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16
)
config = LlamaConfig.from_pretrained(model_id)
model = LlamaForCausalLM.from_pretrained(
                                        model_id,
                                        torch_dtype=torch.bfloat16,
                                        quantization_config=bnb_config,
                                        load_in_4bit=True,
                                        use_safetensors=True, 
                                        config = config,
                                        device_map={"": int(os.environ.get("LOCAL_RANK") or 0)}
                                        )  
model.bos_token_id = 1
model.eos_token_id = 2
model.pad_token_id = 0
model.unk_token_id = 0

model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=True)

peft_params = []
non_peft_names = []
non_peft_params = []
for name, param in model.named_parameters():
    if param.requires_grad is False:
        continue
    non_peft_names.append(name)
    non_peft_params.append(param)


config = LoraConfig(
    r=8,
    lora_alpha=32,
    inference_mode=False, 
    target_modules=["q_pro","v_proj","down_proj","up_proj"],
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM"
)
model = get_peft_model(model, config)
print_trainable_parameters(model)

for name, param in model.named_parameters():
    if name.split('base_model.model.')[1] in non_peft_names:
        if not training_args.lora_only:
            param.requires_grad = True
    if "lora_" in name:
        peft_params.append(param)

torch.cuda.empty_cache()

# 加载数据
train_data = Dataset.from_list(ff)  # 略
valid_data = None

def tokenize(item, cutoff_len=cutoff_len):
    result = {}
    input_ids, labels, conversation = _addrole_masklabel_tokenize(item) # 略
    attention_mask = [1] * len(input_ids)
    result['input_ids'] = input_ids[:cutoff_len]
    result['attention_mask'] = attention_mask[:cutoff_len]
    result['labels'] = labels[:cutoff_len]
    return result

train_data = train_data.map(tokenize)

# ========== Initialize our Trainer. ==========
training_args = transformers.TrainingArguments(
        per_device_train_batch_size=bs,
        gradient_accumulation_steps=8,
        warmup_steps=1000,
        optim="paged_adamw_32bit",
        learning_rate=1e-5,
        num_train_epochs=2,
        fp16=True,
        logging_steps=10,
        save_strategy="steps",
        save_steps=100,
        output_dir=output_dir,
        save_total_limit=1,
        load_best_model_at_end=False,
        ddp_find_unused_parameters=False,  # if ddp else None,
        deepspeed="ds.config"
        # group_by_length=True
    )
training_args.lora_only = True
training_args.do_train = True
training_args.hf_weight_decay = 0.1
training_args.hf_lr_scheduler_type = "cosine"
training_args.clip_loss_value = 20.0
training_args.gradient_clipping = 10.0
trainer = LOMOLoRATrainer(
    model=model,
    training_args=training_args,
    data_collator={'train': DataCollatorForCauselLM(tokenizer, max_length=8196, padding_side='right'),
                   'eval': EvalDataCollatorForCauselLM(tokenizer, max_length=8196, padding_side='right')},
    train_dataset=train_data,
    eval_dataset=valid_data,
    tokenizer=tokenizer,
    compute_metrics=None,
    optimizers={'model_parameters': peft_params},
)
trainer.train()

ps: deepspeed+zero2 的qlora 大约占用13432MiB / 81251MiB

zlh1992 avatar Dec 26 '23 14:12 zlh1992

看起来像是没有量化?我还没测试过结合量化训练

KaiLv69 avatar Dec 27 '23 08:12 KaiLv69