[Bug] Huggingface model works in cuda:0 but not cuda:1
Checklist
- [X] 1. I have searched related issues but cannot get the expected help.
- [X] 2. The bug has not been fixed in the latest version.
- [X] 3. Please note that if the bug-related issue you submitted lacks corresponding environment info and a minimal reproducible demo, it will be challenging for us to reproduce and resolve the issue, reducing the likelihood of receiving feedback.
Describe the bug
Using the minimal reproduction from the documentation, but load the model in another gpu not cuda:0, such as cuda:1. The chat method will fail to generate response.
In documentation, the model is loaded as
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True).eval().cuda()
It works.
But the following code,
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True).eval().cuda("cuda:1") # note the model is loaded to cuda:1 not cuda:0!
The model can be loaded to the correct model, but fail to run chat method.
RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:1 and cuda:0! (when checking argument for argument index in method wrapper_CUDA__index_select)
I think it is due to these lines. https://github.com/OpenGVLab/InternVL/blob/6a230b34cc04eb2ee51c3ea013362a57ab6a6dc9/internvl_chat/internvl/model/internvl_chat/modeling_internvl_chat.py#L288-L289
It should be ...to("<DEVICE>") rather than just .cuda().
Reproduction
import numpy as np
import torch
import torchvision.transforms as T
from decord import VideoReader, cpu
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_file, input_size=448, max_num=12):
image = Image.open(image_file).convert('RGB')
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
# If you have an 80G A100 GPU, you can put the entire model on a single GPU.
# Otherwise, you need to load a model using multiple GPUs, please refer to the `Multiple GPUs` section.
path = 'OpenGVLab/InternVL2-8B'
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True).eval().cuda("cuda:1") # note the model is loaded to cuda:1 not cuda:0!
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
generation_config = dict(max_new_tokens=1024, do_sample=False)
# pure-text conversation (纯文本对话)
question = 'Hello, who are you?'
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')
Environment
> Which model are you using?
`InternVL2-8B` run in one GPU (RTX 4090)
> How you installed PyTorch [e.g., pip, conda, source]
via conda.
# install gcc, gxx compiler
conda install gcc=9 gxx=9 cxx-compiler -y -c conda-forge
# install pytorch, cuda and other dependencies
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=11.8 -c pytorch -c nvidia -y
conda install nvidia/label/cuda-11.8.0::cuda -y
> Other environment variables that may be related
Others should be fine.
Error traceback
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
Cell In[2], line 100
98 # pure-text conversation (纯文本对话)
99 question = 'Hello, who are you?'
--> 100 response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
101 print(f'User: {question}\nAssistant: {response}')
File ~/.cache/huggingface/modules/transformers_modules/InternVL2-8B/modeling_internvl_chat.py:285, in InternVLChatModel.chat(self, tokenizer, pixel_values, question, generation_config, history, return_history, num_patches_list, IMG_START_TOKEN, IMG_END_TOKEN, IMG_CONTEXT_TOKEN, verbose)
283 attention_mask = model_inputs['attention_mask'].cuda()
284 generation_config['eos_token_id'] = eos_token_id
--> 285 generation_output = self.generate(
286 pixel_values=pixel_values,
287 input_ids=input_ids,
288 attention_mask=attention_mask,
289 **generation_config
290 )
291 response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
292 response = response.split(template.sep)[0].strip()
File ~/miniconda3/envs/vlm/lib/python3.10/site-packages/torch/utils/_contextlib.py:115, in context_decorator.<locals>.decorate_context(*args, **kwargs)
112 @functools.wraps(func)
113 def decorate_context(*args, **kwargs):
114 with ctx_factory():
--> 115 return func(*args, **kwargs)
File ~/.cache/huggingface/modules/transformers_modules/InternVL2-8B/modeling_internvl_chat.py:333, in InternVLChatModel.generate(self, pixel_values, input_ids, attention_mask, visual_features, generation_config, output_hidden_states, return_dict, **generate_kwargs)
331 input_embeds = input_embeds.reshape(B, N, C)
332 else:
--> 333 input_embeds = self.language_model.get_input_embeddings()(input_ids)
335 outputs = self.language_model.generate(
336 inputs_embeds=input_embeds,
337 attention_mask=attention_mask,
(...)
342 **generate_kwargs,
343 )
345 return outputs
File ~/miniconda3/envs/vlm/lib/python3.10/site-packages/torch/nn/modules/module.py:1518, in Module._wrapped_call_impl(self, *args, **kwargs)
1516 return self._compiled_call_impl(*args, **kwargs) # type: ignore[misc]
1517 else:
-> 1518 return self._call_impl(*args, **kwargs)
File ~/miniconda3/envs/vlm/lib/python3.10/site-packages/torch/nn/modules/module.py:1527, in Module._call_impl(self, *args, **kwargs)
1522 # If we don't have any hooks, we want to skip the rest of the logic in
1523 # this function, and just call forward.
1524 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
1525 or _global_backward_pre_hooks or _global_backward_hooks
1526 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1527 return forward_call(*args, **kwargs)
1529 try:
1530 result = None
File ~/miniconda3/envs/vlm/lib/python3.10/site-packages/torch/nn/modules/sparse.py:162, in Embedding.forward(self, input)
161 def forward(self, input: Tensor) -> Tensor:
--> 162 return F.embedding(
163 input, self.weight, self.padding_idx, self.max_norm,
164 self.norm_type, self.scale_grad_by_freq, self.sparse)
File ~/miniconda3/envs/vlm/lib/python3.10/site-packages/torch/nn/functional.py:2233, in embedding(input, weight, padding_idx, max_norm, norm_type, scale_grad_by_freq, sparse)
2227 # Note [embedding_renorm set_grad_enabled]
2228 # XXX: equivalent to
2229 # with torch.no_grad():
2230 # torch.embedding_renorm_
2231 # remove once script supports set_grad_enabled
2232 _no_grad_embedding_renorm_(weight, input, max_norm, norm_type)
-> 2233 return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse)
I try this CUDA_VISIBLE_DEVICES=xx before command. :)
I try this CUDA_VISIBLE_DEVICES=xx before command. :)
Hi hshjerry, thank you for your reply. Yeah if only expose 1 GPU to the system, it will work. However, we're working on a compositional system which load multiple models to multiple GPUs, therefore we have to move each model to corresponding "cuda:x", as the environment variable CUDA_VISIBLE_DEVICES is shared in the process.
You can try setting this environment variable by adding os.environ["CUDA_VISIBLE_DEVICES"]="x" before import torch