MiniCPM-o
MiniCPM-o copied to clipboard
[BUG] MiniCPM-o-2_6-gguf内存和磁盘占用满后一直卡住
是否已有关于该错误的issue或讨论? | Is there an existing issue / discussion for this?
- [X] 我已经搜索过已有的issues和讨论 | I have searched the existing issues / discussions
该问题是否在FAQ中有解答? | Is there an existing answer for this in FAQ?
- [X] 我已经搜索过FAQ | I have searched FAQ
当前行为 | Current Behavior
我下载了MiniCPM-o-2_6-gguf/Model-7.6B-Q8_0.gguf模型,然后用llama_cpp_python 加载后尝试问模型进行一些对话,遇到了两个问题,第一个问题是,当我执行这个脚本时候,遇到了TypeError: can only concatenate str (not "list") to str
,代码和报错如下:
代码:
# 指定本地模型文件路径
model_path = "/home/hygx/.cache/modelscope/hub/OpenBMB/MiniCPM-o-2_6-gguf/Model-7.6B-Q8_0.gguf"
# 替换为你的图片文件路径
image_path = "/home/hygx/code/MiniCPM-o/assets/worldmap_ck.jpg"
import base64
from llama_cpp import Llama
def image_to_base64_data_uri(file_path):
with open(file_path, "rb") as img_file:
base64_data = base64.b64encode(img_file.read()).decode('utf-8')
return f"data:image/png;base64,{base64_data}"
# 指定本地模型文件路径
llm = Llama(model_path=model_path)
# 替换为你的图片文件路径
data_uri = image_to_base64_data_uri(image_path)
messages = [
{"role": "system", "content": "You are an assistant who perfectly describes images."},
{
"role": "user",
"content": [
{"type": "text", "text": "Describe this image in detail please."},
{"type": "image_url", "image_url": {"url": data_uri}}
]
}
]
response = llm.create_chat_completion(messages)
print(response["choices"][0]["text"])
报错:
# 指定本地模型文件路径
model_path = "/home/hygx/.cache/modelscope/hub/OpenBMB/MiniCPM-o-2_6-gguf/Model-7.6B-Q8_0.gguf"
# 替换为你的图片文件路径
image_path = "/home/hygx/code/MiniCPM-o/assets/worldmap_ck.jpg"
import base64
from llama_cpp import Llama
def image_to_base64_data_uri(file_path):
with open(file_path, "rb") as img_file:
base64_data = base64.b64encode(img_file.read()).decode('utf-8')
return f"data:image/png;base64,{base64_data}"
# 指定本地模型文件路径
llm = Llama(model_path=model_path)
# 替换为你的图片文件路径
data_uri = image_to_base64_data_uri(image_path)
messages = [
{"role": "system", "content": "You are an assistant who perfectly describes images."},
{
"role": "user",
"content": [
{"type": "text", "text": "Describe this image in detail please."},
{"type": "image_url", "image_url": {"url": data_uri}}
]
}
]
response = llm.create_chat_completion(messages)
print(response["choices"][0]["text"])
当我把代码改成下面这样的时候(改了messages变量):
# 指定本地模型文件路径
model_path = "/home/hygx/.cache/modelscope/hub/OpenBMB/MiniCPM-o-2_6-gguf/Model-7.6B-Q8_0.gguf"
# 替换为你的图片文件路径
image_path = "/home/hygx/code/MiniCPM-o/assets/worldmap_ck.jpg"
import base64
from llama_cpp import Llama
def image_to_base64_data_uri(file_path):
with open(file_path, "rb") as img_file:
base64_data = base64.b64encode(img_file.read()).decode('utf-8')
return f"data:image/png;base64,{base64_data}"
# 指定本地模型文件路径
llm = Llama(model_path=model_path)
# 替换为你的图片文件路径
data_uri = image_to_base64_data_uri(image_path)
messages = [
{"role": "system", "content": "You are an assistant who perfectly describes images."},
{
"role": "user",
"content": "Describe this image in detail please."
}
]
response = llm.create_chat_completion(messages)
print(response["choices"][0]["text"])
报错消失了,但是我的电脑的内存和磁盘占用飙升,直接占满了,并且程序一直卡在这里,没有生成出结果,我用的是i9-14900KF CPU 和16G内存,我不确定这个模型的配置要求是什么,可以告知一下吗?另外我的第一份代码为什么会报错?
期望行为 | Expected Behavior
能和模型进行对话交互
复现方法 | Steps To Reproduce
No response
运行环境 | Environment
- OS: Windows 11 with WSL2
- Python:3.10
- Transformers:4.44.2
- PyTorch:2.2.0
- CUDA (`python -c 'import torch; print(torch.version.cuda)'`):12.1
- CPU: i9-14900 KF
- 内存: 16GB
备注 | Anything else?
No response